Advertisement

Intensive Care Medicine

, Volume 41, Issue 3, pp 470–478 | Cite as

Plasma soluble thrombomodulin levels are associated with mortality in the acute respiratory distress syndrome

  • Anil Sapru
  • Carolyn S. Calfee
  • Kathleen D. Liu
  • Kirsten Kangelaris
  • Helen Hansen
  • Ludmila Pawlikowska
  • Lorraine B. Ware
  • Mustafa F. Alkhouli
  • Jason Abbot
  • Michael A. Matthay
  • The NHLBI ARDS Network
Original

Abstract

Objective

Thombomodulin (TM) is an activator of protein C and a biomarker for endothelial injury. We hypothesized that (1) elevated plasma levels would be associated with clinical outcomes and (2) polymorphisms in the TM gene would be associated with plasma levels.

Patients

We studied 449 patients enrolled in the Fluid and Catheter Treatment Trial (FACTT) for whom both plasma and DNA were available. We used logistic regression and receiver operator curves (ROC) to test for associations between soluble TM (sTM) and mortality at 60 days.

Measurements and results

Plasma sTM levels were higher in non-survivors than survivors at baseline [median 147 (IQR, 95–218) vs. 89 (56–129) ng/mL, p < 0.0001] and on day 3 after study enrollment [205 (146–302) vs. 127 (85–189), p < 0.0001]. The odds of death increased by 2.4 (95 % CI 1.5–3.8, p < 0.001), and by 2.8 (1.7–4.7, P < 0.001) for every log increase in baseline and day 3 sTM levels, respectively, after adjustment for age, race, gender, severity of illness, fluid management strategy, baseline creatinine, and non-pulmonary sepsis as the primary cause of ARDS. By ROC analysis, plasma sTM levels discriminated between non-survivors and survivors [AUC = 72 % (66–78 %) vs. AUC = 54 % for severity based on Berlin criteria). Addition of sTM improved discrimination based on APACHE III from 77 to 80 % (P < 0.03). sTM levels at baseline were not statistically different among subjects stratified by genotypes of tag SNPs in the TM gene.

Conclusions

Higher plasma sTM levels are associated with increased mortality in ARDS. The lack of association between the sTM levels and genetic variants suggests that the increased levels of sTM may reflect severity of endothelial damage rather than genetic heterogeneity. These findings underscore the importance of endothelial injury in ARDS pathogenesis and suggest that, in combination with clinical markers, sTM could contribute to risk stratification.

Keywords

ARDS Thrombomodulin Biomarkers Endothelium Mortality 

Notes

Acknowledgments

The study was supported by the following research grants: NIH/NHLBI contracts N01-HR-46046-64 and N01-HR-16146-54 (ARDS Network). NHLBI K23 HL085526 (AS). NHLBI HL51856 (MAM). NHLBI HL110969 (CSC) HL103836 (LBW) and an American Heart Association Established Investigator Award (LBW). National Institutes of Health, National Heart, Lung, and Blood Institute Ards Network. The following persons and institutions participated in the FACTT trial: Steering Committee Chair—G. R. Bernard; Clinical Coordinating Center—D. A. Schoenfeld, B. T. Thompson, N. Ringwood, C. Oldmixon, F. Molay, A. Korpak, R. Morse, D. Hayden, M. Ancukiewicz, A. Minihan; Protocol-Review Committee—J. G. N. Garcia, R. Balk, S. Emerson, M. Shasby, W.Sibbald; Data Safety and Monitoring Board—R. Spragg, G. Corbie-Smith, J. Kelley, K. Leeper, A. S. Slutsky, B. Turnbull, C. Vreim; National Heart, Lung, and Blood Institute—A. L. Harabin, D. Gail, P. Lew, M. Waclawiw; ARDS Clinical Trials Network Consultant—P. Parsons; Clinical Centers—University of Washington, Harborview—L. Hudson, K. Steinberg, M. Neff, R. Maier, K. Sims, C. Cooper, T. Berry-Bell, G. Carter, L. Andersson; University of Michigan—G. B. Toews, R. H. Bartlett, C. Watts, R. Hyzy, D. Arnoldi, R. Dechert, M. Purple; University of Maryland—H. Silverman, C. Shanholtz, A. Moore, L. Heinrich, W. Corral; Johns Hopkins University—R. Brower, D. Thompson, H. Fessler, S. Murray, A. Sculley; Cleveland Clinic Foundation—H. P. Wiedemann, A. C. Arroliga, J. Komara, T. Isabella, M. Ferrari; University Hospitals of Cleveland—J. Kern, R. Hejal, D. Haney; MetroHealth Medical Center—A. F. Connors; University of Colorado Health Sciences Center—E. Abraham, R. McIntyre, F. Piedalue; Denver Veterans Affairs Medical Center—C. Welsh; Denver Health Medical Center—I. Douglas, R. Wolkin; St. Anthony Hospital—T. Bost, B. Sagel, A. Hawkes; Duke University—N. MacIntyre, J. Govert, W. Fulkerson, L. Mallatrat, L. Brown, S. Everett, E. VanDyne, N. Knudsen, M. Gentile; University of North Carolina—P. Rock, S. Carson, C. Schuler, L. Baker, V. Salo; Vanderbilt University—A. P. Wheeler, G. Bernard, T. Rice, B. Christman, S. Bozeman, T. Welch; University of Pennsylvania—P. Lanken, J. Christie, B. Fuchs, B. Finkel, S. Kaplan, V. Gracias, C. W. Hanson, P. Reilly, M. B. Shapiro, R. Burke, E. O’Connor, D. Wolfe; Jefferson Medical College—J. Gottlieb, P. Park, D. M. Dillon, A. Girod, J. Furlong; LDS Hospital—A. Morris, C. Grissom, L. Weaver, J. Orme, T. Clemmer, R. Davis, J. Gleed, S. Pies, T. Graydon, S. Anderson, K. Bennion, P. Skinner; McKay-Dee Hospital—C. Lawton, J. d’Hulst, D. Hanselman; Utah Valley Regional Medical Center—K. Sundar, T. Hill, K. Ludwig, D. Nielson; University of California, San Francisco—M. A. Matthay, M. Eisner, B. Daniel, O. Garcia; San Francisco General—J. Luce, R. Kallet; University of California, San Francisco, Fresno—M. Peterson, J. Lanford; Baylor College of Medicine—K. Guntupalli, V. Bandi, C. Pope; Baystate Medical Center—J. Steingrub, M. Tidswell, L. Kozikowski; Louisiana State University Health Sciences Center—B. deBoisblanc, J. Hunt, C. Glynn, P. Lauto, G. Meyaski, C. Romaine; Louisiana State University Earl K. Long Center—S. Brierre, C. LeBlanc, K. Reed; Alton-Ochsner Clinic Foundation—D. Taylor, C. Thompson; Tulane University Medical Center—F. Simeone, M. Johnston, M. Wright; University of Chicago—G. Schmidt, J. Hall, S. Hemmann, B. Gehlbach, Vinayak, W. Schweickert; Northwestern University—J. Dematte D’Amico, H. Donnelly; University of Texas Health Sciences Center—A. Anzueto, J. McCarthy, S. Kucera, J. Peters, T. Houlihan, R. Steward, D. Vines; University of Virginia—J. Truwit, A. F. Connors, M. Marshall, W. Matsumura, R. Brett; University of Pittsburgh—M. Donahoe, P. Linden, J. Puyana, L. Lucht, A. Verno; Wake Forest University—R. D. Hite, P. Morris, A. Howard, A. Nesser, S. Perez; Moses Cone Memorial Hospital—P. Wright, C. Carter-Cole, J. McLean; St. Paul’s Hospital, Vancouver—J. Russell, L. Lazowski, K. Foley; Vancouver General Hospital—D. Chittock, L. Grandolfo; Mayo Foundation—M. Murray.

Conflicts of interest

All authors declare that they have no conflict of interest.

Supplementary material

134_2015_3648_MOESM1_ESM.tiff (3.7 mb)
Supplementary material 1 (TIFF 3836 kb) Supplementary Fig. 1. Box plots of sTM levels collected at baseline among subjects with ARDS stratified by the cause of ALI. Patients with ARDS with sepsis as the primary cause of ARDS had higher sTM levels (p < 0.001). Panel A Day 0, Panel B Day 3
134_2015_3648_MOESM2_ESM.tiff (1.9 mb)
Supplementary material 2 (TIFF 1934 kb) Supplementary Fig. 2. Receiver Operator Characteristic Curves depicting improvement in the discriminatory ability of APACHE III score with addition of sTM levels to the model. The area under curve increased from 77 % to 80 % (p < 0.03)

References

  1. 1.
    Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342:1334–1349CrossRefPubMedGoogle Scholar
  2. 2.
    Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, Stern EJ, Hudson LD (2005) Incidence and outcomes of acute lung injury. N Engl J Med 353:1685–1693CrossRefPubMedGoogle Scholar
  3. 3.
    Zimmerman JJ, Akhtar SR, Caldwell E, Rubenfeld GD (2009) Incidence and outcomes of pediatric acute lung injury. Pediatrics 124:87–95CrossRefPubMedGoogle Scholar
  4. 4.
    Khadaroo RG, Marshall JC (2002) ARDS and the multiple organ dysfunction syndrome. Common mechanisms of a common systemic process. Crit Care Clin 18:127–141CrossRefPubMedGoogle Scholar
  5. 5.
    Boffa MC, Karmochkine M (1998) Thrombomodulin: an overview and potential implications in vascular disorders. Lupus 7(Suppl 2):S120–125CrossRefPubMedGoogle Scholar
  6. 6.
    Maruyama I, Shinmyozu K (1994) Soluble thrombomodulin: as a marker of endothelial injury. Rinsho Byori 42:563–568PubMedGoogle Scholar
  7. 7.
    Ohlin AK, Larsson K, Hansson M (2005) Soluble thrombomodulin activity and soluble thrombomodulin antigen in plasma. J Thromb Haemost 3:976–982CrossRefPubMedGoogle Scholar
  8. 8.
    Constans J, Conri C (2006) Circulating markers of endothelial function in cardiovascular disease. Clin Chim Acta 368:33–47CrossRefPubMedGoogle Scholar
  9. 9.
    Olivot JM, Labreuche J, Aiach M, Amarenco P (2004) Soluble thrombomodulin and brain infarction: case-control and prospective study. Stroke 35:1946–1951CrossRefPubMedGoogle Scholar
  10. 10.
    Lin SM, Wang YM, Lin HC, Lee KY, Huang CD, Liu CY, Wang CH, Kuo HP (2008) Serum thrombomodulin level relates to the clinical course of disseminated intravascular coagulation, multiorgan dysfunction syndrome, and mortality in patients with sepsis. Crit Care Med 36:683–689CrossRefPubMedGoogle Scholar
  11. 11.
    Maeda S, Takahashi S, Sato M (2012) Serum thrombomodulin as a newly identified biomarker for postoperative lung injury: a prospective observational study. Tohoku J Exp Med 228:135–141CrossRefPubMedGoogle Scholar
  12. 12.
    Kudo D, Toyama M, Aoyagi T, Akahori Y, Yamamoto H, Ishii K, Kanno E, Maruyama R, Kaku M, Kushimoto S, Kawakami K (2013) Involvement of high mobility group box 1 and the therapeutic effect of recombinant thrombomodulin in a mouse model of severe acute respiratory distress syndrome. Clin Exp Immunol 173:276–287CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Agrawal A, Zhuo H, Brady S, Levitt J, Steingrub J, Siegel MD, Soto G, Peterson MW, Chesnutt MS, Matthay MA, Liu KD (2012) Pathogenetic and predictive value of biomarkers in patients with ALI and lower severity of illness: results from two clinical trials. Am J Physiol Lung Cell Mol Physiol 303:L634–639CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Matthay MA, Ware LB (2004) Plasma protein C levels in patients with acute lung injury: prognostic significance. Crit Care Med 32:S229–232CrossRefPubMedGoogle Scholar
  15. 15.
    McClintock D, Zhuo H, Wickersham N, Matthay MA, Ware LB (2008) Biomarkers of inflammation, coagulation and fibrinolysis predict mortality in acute lung injury. Crit Care 12:R41CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Ware LB, Fang X, Matthay MA (2003) Protein C and thrombomodulin in human acute lung injury. Am J Physiol Lung Cell Mol Physiol 285:L514–521CrossRefPubMedGoogle Scholar
  17. 17.
    Wheeler AP, Bernard GR, Thompson BT, Schoenfeld D, Wiedemann HP, deBoisblanc B, Connors AF Jr, Hite RD, Harabin AL (2006) Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med 354:2213–2224CrossRefPubMedGoogle Scholar
  18. 18.
    Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, Connors AF Jr, Hite RD, Harabin AL (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354:2564–2575CrossRefPubMedGoogle Scholar
  19. 19.
    Schoenfeld D (2002) Statistical evaluation of ventillator-free days as an efficacy measure in clinical trials of treatments for acute respiratory distress syndrome. Crit Care Med 30:1772–1777CrossRefPubMedGoogle Scholar
  20. 20.
    Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA (2004) Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet 74:106–120CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Hsu TM, Kwok PY (2003) Homogeneous primer extension assay with fluorescence polarization detection. Methods Mol Biol 212:177–187PubMedGoogle Scholar
  22. 22.
    Vittinghoff E (2005) Regression methods in biostatistics : linear, logistic, survival, and repeated measures models. Springer, New YorkGoogle Scholar
  23. 23.
    Ware LB, Koyama T, Billheimer DD, Wu W, Bernard GR, Thompson BT, Brower RG, Standiford TJ, Martin TR, Matthay MA (2010) Prognostic and pathogenetic value of combining clinical and biochemical indices in patients with acute lung injury. Chest 137:288–296CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Calfee CS, Delucchi K, Parsons PE, Thompson BT, Ware LB, Matthay MA (2014) Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med 2:611–620CrossRefPubMedGoogle Scholar
  25. 25.
    Terpstra ML, Aman J, van Nieuw Amerongen GP, Groeneveld AB (2014) Plasma biomarkers for acute respiratory distress syndrome: a systematic review and meta-analysis. Crit Care Med 42:691–700CrossRefPubMedGoogle Scholar
  26. 26.
    Calfee CS, Gallagher D, Abbott J, Thompson BT, Matthay MA (2012) Plasma angiopoietin-2 in clinical acute lung injury: prognostic and pathogenetic significance. Crit Care Med 40:1731–1737CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Delabranche X, Boisrame-Helms J, Asfar P, Berger A, Mootien Y, Lavigne T, Grunebaum L, Lanza F, Gachet C, Freyssinet JM, Toti F, Meziani F (2013) Microparticles are new biomarkers of septic shock-induced disseminated intravascular coagulopathy. Intensive Care Med 39:1695–1703CrossRefPubMedGoogle Scholar
  28. 28.
    Levi M, van der Poll T (2013) Endothelial injury in sepsis. Intensive Care Med 39:1839–1842CrossRefPubMedGoogle Scholar
  29. 29.
    Takano S, Kimura S, Ohdama S, Aoki N (1990) Plasma thrombomodulin in health and diseases. Blood 76:2024–2029PubMedGoogle Scholar
  30. 30.
    Vadasz I, Morty RE, Olschewski A, Konigshoff M, Kohstall MG, Ghofrani HA, Grimminger F, Seeger W (2005) Thrombin impairs alveolar fluid clearance by promoting endocytosis of Na+ , K+ -ATPase. Am J Respir Cell Mol Biol 33:343–354CrossRefPubMedGoogle Scholar
  31. 31.
    Gunther A, Mosavi P, Heinemann S, Ruppert C, Muth H, Markart P, Grimminger F, Walmrath D, Temmesfeld-Wollbruck B, Seeger W (2000) Alveolar fibrin formation caused by enhanced procoagulant and depressed fibrinolytic capacities in severe pneumonia. Comparison with the acute respiratory distress syndrome. Am J Respir Crit Care Med 161:454–462CrossRefPubMedGoogle Scholar
  32. 32.
    Faust SN, Levin M, Harrison OB, Goldin RD, Lockhart MS, Kondaveeti S, Laszik Z, Esmon CT, Heyderman RS (2001) Dysfunction of endothelial protein C activation in severe meningococcal sepsis. N Engl J Med 345:408–416CrossRefPubMedGoogle Scholar
  33. 33.
    Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N (2004) Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 96:434–442CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2015

Authors and Affiliations

  • Anil Sapru
    • 1
    • 2
  • Carolyn S. Calfee
    • 3
  • Kathleen D. Liu
    • 3
  • Kirsten Kangelaris
    • 3
  • Helen Hansen
    • 4
  • Ludmila Pawlikowska
    • 5
    • 6
  • Lorraine B. Ware
    • 7
    • 8
  • Mustafa F. Alkhouli
    • 1
  • Jason Abbot
    • 9
  • Michael A. Matthay
    • 9
  • The NHLBI ARDS Network
  1. 1.Department of PediatricsUniversity of CaliforniaSan FranciscoUSA
  2. 2.Department of PediatricsSan FranciscoUSA
  3. 3.Medicine and AnesthesiaUniversity of CaliforniaSan FranciscoUSA
  4. 4.Molecular Epidemiology LaboratoryUniversity of CaliforniaSan FranciscoUSA
  5. 5.Anesthesia and Perioperative CareUniversity of CaliforniaSan FranciscoUSA
  6. 6.Institute for Human GeneticsUniversity of CaliforniaSan FranciscoUSA
  7. 7.Department of Medicine and PathologyVanderbilt UniversityNashvilleUSA
  8. 8.Department of Microbiology and ImmunologyVanderbilt UniversityNashvilleUSA
  9. 9.Cardiovascular Research Institute, Departments of Medicine and AnesthesiaUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations