Advertisement

Intensive Care Medicine

, Volume 40, Issue 11, pp 1670–1678 | Cite as

The assessment of transpulmonary pressure in mechanically ventilated ARDS patients

  • Davide ChiumelloEmail author
  • Massimo Cressoni
  • Andrea Colombo
  • Giovanni Babini
  • Matteo Brioni
  • Francesco Crimella
  • Stefan Lundin
  • Ola Stenqvist
  • Luciano Gattinoni
Original

Abstract

Purpose

The optimal method for estimating transpulmonary pressure (i.e. the fraction of the airway pressure transmitted to the lung) has not yet been established.

Methods

In this study on 44 patients with acute respiratory distress syndrome (ARDS), we computed the end-inspiratory transpulmonary pressure as the change in airway and esophageal pressure from end-inspiration to atmospheric pressure (i.e. release derived) and as the product of the end-inspiratory airway pressure and the ratio of lung to respiratory system elastance (i.e. elastance derived). The end-expiratory transpulmonary pressure was estimated as the product of positive end-expiratory pressure (PEEP) minus the direct measurement of esophageal pressure and by the release method.

Results

The mean elastance- and release-derived transpulmonary pressure were 14.4 ± 3.7 and 14.4 ± 3.8 cmH2O at 5 cmH2O of PEEP and 21.8 ± 5.1 and 21.8 ± 4.9 cmH2O at 15 cmH2O of PEEP, respectively (P = 0.32, P = 0.98, respectively), indicating that these parameters were significantly related (r 2 = 0.98, P < 0.001 at 5 cmH2O of PEEP; r 2 = 0.93, P < 0.001 at 15 cmH2O of PEEP). The percentage error was 5.6 and 12.0 %, respectively. The mean directly measured and release-derived transpulmonary pressure were −8.0 ± 3.8 and 3.9 ± 0.9 cmH2O at 5 cmH2O of PEEP and −1.2 ± 3.2 and 10.6 ± 2.2 cmH2O at 15 cmH2O of PEEP, respectively, indicating that these parameters were not related (r 2 = 0.07, P = 0.08 at 5 cmH2O of PEEP; r 2 = 0.10, P = 0.53 at 15 cmH2O of PEEP).

Conclusions

Based on our observations, elastance-derived transpulmonary pressure can be considered to be an adequate surrogate of the release-derived transpulmonary pressure, while the release-derived and directly measured end-expiratory transpulmonary pressure are not related.

Keywords

Acute respiratory distress syndrome Computed tomography Transpulmonary pressure Esophageal pressure PEEP 

Notes

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

134_2014_3415_MOESM1_ESM.pdf (1.7 mb)
Supplementary material 1 (PDF 1762 kb)

References

  1. 1.
    Gattinoni L, Chiumello D, Carlesso E et al (2004) Bench-to-bedside review: chest wall elastance in acute lung injury/acute respiratory distress syndrome patients. Crit Care 8:350–355PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Grasso S, Mascia L, Del Turco M et al (2002) Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilatory strategy. Anesthesiology 96:795–802PubMedCrossRefGoogle Scholar
  3. 3.
    Ranieri VM, Brienza N, Santostasi S et al (1997) Impairment of lung and chest wall mechanics in patients with acute respiratory distress syndrome: role of abdominal distension. Am J Respir Crit Care Med 156:1082–1091PubMedCrossRefGoogle Scholar
  4. 4.
    Chiumello D, Carlesso E, Cadringher P et al (2008) Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 178:346–355PubMedCrossRefGoogle Scholar
  5. 5.
    De Prost N, Dreyfuss D (2012) How to prevent ventilator-induced lung injury? Minerva Anestesiol 78:1054–1066PubMedGoogle Scholar
  6. 6.
    Cherniak RM, Farhi LE, Armstrong BW et al (1955) A comparison of esophageal and intrapleural pressure in man. J Appl Physiol 8:203–211Google Scholar
  7. 7.
    Milic-Emili J, Mead J, Turner JM et al (1964) Improved technique for estimating pleural pressure from esophageal balloons. J Appl Physiol 19:207–211PubMedGoogle Scholar
  8. 8.
    Petit JM, Milic-Emili G (1958) Measurement of endoesophageal pressure. J Appl Physiol 13:481–485PubMedGoogle Scholar
  9. 9.
    Grasso S, Terragni P, Birocco A et al (2012) ECMO criteria for influenza A (H1N1)-associated ARDS: role of transpulmonary pressure. Intensive Care Med 38:395–403PubMedCrossRefGoogle Scholar
  10. 10.
    Staffieri F, Stripoli T, De M, V et al (2012) Physiological effects of an open lung ventilatory strategy titrated on elastance-derived end-inspiratory transpulmonary pressure: study in a pig model. Crit Care Med 40:2124–2131PubMedCrossRefGoogle Scholar
  11. 11.
    Grasso S, Fanelli V, Cafarelli A et al (2005) Effects of high versus low positive end-expiratory pressures in acute respiratory distress syndrome. Am J Respir Crit Care Med 171:1002–1008PubMedCrossRefGoogle Scholar
  12. 12.
    Krebs J, Pelosi P, Tsagogiorgas C et al (2009) Effects of positive end-expiratory pressure on respiratory function and hemodynamics in patients with acute respiratory failure with and without intra-abdominal hypertension: a pilot study. Crit Care 13:R160PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Kubiak BD, Gatto LA, Jimenez EJ et al (2010) Plateau and transpulmonary pressure with elevated intra-abdominal pressure or atelectasis. J Surg Res 159:e17–e24PubMedCrossRefGoogle Scholar
  14. 14.
    Briel M, Meade M, Mercat A et al (2010) Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 303:865–873PubMedCrossRefGoogle Scholar
  15. 15.
    Guerin C (2011) The preventive role of higher PEEP in treating severely hypoxemic ARDS. Minerva Anestesiol 77:835–845PubMedGoogle Scholar
  16. 16.
    Talmor D, Sarge T, Malhotra A et al (2008) Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 359:2095–2104PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Knowles John H, Hong Suk Ki, Rahn Hermann (1959) Possible errors using esophageal balloon in determination of pressure-volume characteristics of the lung and thoracic cage. J Appl Physiol 14:525–530Google Scholar
  18. 18.
    Hedenstierna G (2012) Esophageal pressure: benefit and limitations. Minerva Anestesiol 78:959–966PubMedGoogle Scholar
  19. 19.
    Talmor D, Sarge T, O’Donnell CR et al (2006) Esophageal and transpulmonary pressures in acute respiratory failure. Crit Care Med 34:1389–1394PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Loring SH, O’Donnell CR, Behazin N et al (1985) (2010) Esophageal pressures in acute lung injury: do they represent artifact or useful information about transpulmonary pressure, chest wall mechanics, and lung stress? J Appl Physiol 108:515–522CrossRefGoogle Scholar
  21. 21.
    Washko GR, O’Donnell CR (1985) Loring SH (2006) Volume-related and volume-independent effects of posture on esophageal and transpulmonary pressures in healthy subjects. J Appl Physiol 100:753–758CrossRefGoogle Scholar
  22. 22.
    Ferguson ND, Fan E, Camporota L et al (2012) The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med 38:1573–1582PubMedCrossRefGoogle Scholar
  23. 23.
    Chiumello D, Cressoni M, Carlesso E et al (2014) Bedside selection of positive end-expiratory pressure in mild, moderate, and severe acute respiratory distress syndrome. Crit Care Med 42:252–264PubMedCrossRefGoogle Scholar
  24. 24.
    Gattinoni L, Caironi P, Cressoni M et al (2006) Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 354:1775–1786PubMedCrossRefGoogle Scholar
  25. 25.
    Pelosi P, Cereda M, Foti G et al (1995) Alterations of lung and chest wall mechanics in patients with acute lung injury: effects of positive end-expiratory pressure. Am J Respir Crit Care Med 152:531–537PubMedCrossRefGoogle Scholar
  26. 26.
    Gattinoni L, Pesenti A, Bombino M et al (1988) Relationships between lung computed tomographic density, gas exchange, and PEEP in acute respiratory failure. Anesthesiology 69:824–832PubMedCrossRefGoogle Scholar
  27. 27.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMedCrossRefGoogle Scholar
  28. 28.
    Critchley LA, Critchley JA (1999) A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput 15:85–91PubMedCrossRefGoogle Scholar
  29. 29.
    Terragni PP, Rosboch G, Tealdi A et al (2007) Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 175:160–166PubMedCrossRefGoogle Scholar
  30. 30.
    Higgs BD (1983) Measurement of pleural pressure with esophageal balloon in anesthetized humans. Anesthesiology 59:340–343PubMedCrossRefGoogle Scholar
  31. 31.
    Buytendijk HJ (1949) Oesophagusdruk en longelasticiteit. PhD thesis, University of Groningen, GroningenGoogle Scholar
  32. 32.
    Akoumianaki E, Maggiore SM, Valenza F et al (2014) The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med 189:520–531PubMedCrossRefGoogle Scholar
  33. 33.
    Cortes I, Penuelas O, Esteban A (2012) Acute respiratory distress syndrome: evaluation and management. Minerva Anestesiol 78:343–357PubMedGoogle Scholar
  34. 34.
    Dantzker DR, Brook CJ, Dehart P et al (1979) Ventilation-perfusion distributions in the adult respiratory distress syndrome. Am Rev Respir Dis 120:1039–1052PubMedGoogle Scholar
  35. 35.
    de Chazal I, Hubmayr RD (2003) Novel aspects of pulmonary mechanics in intensive care. Br J Anaesth 91:81–91PubMedCrossRefGoogle Scholar
  36. 36.
    Marini JJ, O’Quin R, Culver BH et al (1982) Estimation of transmural cardiac pressures during ventilation with PEEP. J Appl Physiol Respir Environ Exerc Physiol 53:384–391PubMedGoogle Scholar
  37. 37.
    Pelosi P, Goldner M, McKibben A et al (2001) Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med 164:122–130PubMedCrossRefGoogle Scholar
  38. 38.
    Gillespie DJ (1973) Comparison of esophageal and pleural pressures in the anesthetized dog. J Appl Physiol 35:709–713PubMedGoogle Scholar
  39. 39.
    Gulati G, Novero A, Loring SH et al (2013) Pleural pressure and optimal positive end-expiratory pressure based on esophageal pressure versus chest wall elastance: incompatible results. Crit Care Med 41:1951–1957PubMedCrossRefGoogle Scholar
  40. 40.
    Guerin C, Richard JC (2012) Comparison of 2 correction methods for absolute values of esophageal pressure in subjects with acute hypoxemic respiratory failure, mechanically ventilated in the ICU. Respir Care 57:2045–2051PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2014

Authors and Affiliations

  • Davide Chiumello
    • 1
    • 2
    Email author
  • Massimo Cressoni
    • 2
  • Andrea Colombo
    • 2
  • Giovanni Babini
    • 2
  • Matteo Brioni
    • 2
  • Francesco Crimella
    • 2
  • Stefan Lundin
    • 3
  • Ola Stenqvist
    • 3
  • Luciano Gattinoni
    • 1
    • 2
  1. 1.Dipartimento di Anestesia, Rianimazione (Intensiva e Subintensiva) e Terapia del DoloreFondazione IRCCS Ca’ Granda–Ospedale Maggiore PoliclinicoMilanItaly
  2. 2.Dipartimento di Fisiopatologia Medico-Chirurgica e dei TrapiantiUniversità degli Studi di MilanoMilanItaly
  3. 3.Department of Anesthesiology and Intensive Care MedicineSahlgrenska University HospitalGothenburgSweden

Personalised recommendations