Intensive Care Medicine

, Volume 40, Issue 9, pp 1227–1240 | Cite as

Effects of alveolar recruitment maneuvers on clinical outcomes in patients with acute respiratory distress syndrome: a systematic review and meta-analysis

  • Erica Aranha Suzumura
  • Mabel Figueiró
  • Karina Normilio-Silva
  • Lígia Laranjeira
  • Claudia Oliveira
  • Anna Maria Buehler
  • Diogo Bugano
  • Marcelo Britto Passos Amato
  • Carlos Roberto Ribeiro Carvalho
  • Otavio Berwanger
  • Alexandre Biasi Cavalcanti
Systematic Review



To assess the effects of alveolar recruitment maneuvers (ARMs) on clinical outcomes in patients with acute respiratory distress syndrome (ARDS).


We conducted a search of the MEDLINE, EMBASE, LILACS, CINAHL, CENTRAL, Scopus, and Web of Science (from inception to July 2014) databases for all (i.e. no language restriction) randomized controlled trials (RCTs) evaluating the effects of ARMs versus no ARMs in adults with ARDS. Four teams of two reviewers independently assessed the eligibility of the studies identified during the search and appraised the risk of bias and extracted data from those which were assessed as meeting the inclusion criteria. Data were pooled using the random-effects model. Trial sequential analysis (TSA) was used to establish monitoring boundaries to limit global type I error due to repetitive testing for our primary outcome (in-hospital mortality). The GRADE system was used to rate the quality of evidence.


Our database search identified ten RCTs (1,594 patients, 612 events) which satisfied the inclusion criteria. The meta-analysis assessing the effect of ARMs on in-hospital mortality showed a risk ratio (RR) of 0.84 [95 % confidence interval (CI) 0.74–0.95; I 2 = 0 %], although the quality of evidence was considered to be low due to the risk of bias in the included trials and the indirectness of the evidence—that is, ARMs were usually conducted together with other ventilatory interventions which may affect the outcome of interest. There were no differences in the rates of barotrauma (RR 1.11; 95 % CI 0.78–1.57; I 2 = 0 %) or need for rescue therapies (RR 0.76, 95 % CI 0.41–1.40; I 2 = 56 %). Most trials found no difference between groups in terms of duration of mechanical ventilation and length of stay in the intensive care unit and hospital. The TSA showed that the available evidence for the effect of ARMs on in-hospital mortality is precise in the case of a type I error of 5 %, but it is not precise with a type I error of 1 %.


Although ARMs may decrease the mortality of patients with ARDS without increasing the risk for major adverse events, current evidence is not definitive. Large-scale ongoing trials addressing this question may provide data better applicable to clinical practice.


Acute respiratory distress syndrome Recruitment maneuver Mechanical ventilation Systematic review Meta-analysis Randomized 



We would like to thank Dr. Wu Hsing and Alessandra Kodama (both from HCor, São Paulo, Brazil) for their help in manuscript translation as well as Dr. Thomas Stewart (University of Toronto, Canada), Dr. Kwang Park (Ajou University School of Medicine, Suwon, Korea), and Dr. Xiao-zhi Wang (Binzhou Medicai College, Shandong, China) for their help in providing additional information from their studies. This study was conducted within the framework of the Brazilian Ministry of Health-Program “Hospitais de Excelência a Serviço do SUS” in partnership with HCor. The sponsor had no participation with the conception, conduct, or decision to publish the results from this study.

Conflicts of interest


Supplementary material

134_2014_3413_MOESM1_ESM.docx (472 kb)
Supplementary material 1 (DOCX 472 kb)


  1. 1.
    Sigurdsson MI, Sigvaldason K, Gunnarsson TS, Moller A, Sigurdsson GH (2013) Acute respiratory distress syndrome: nationwide changes in incidence, treatment and mortality over 23 years. Acta Anaesthesiol Scand 57(1):37–45. doi: 10.1111/aas.12001 PubMedCrossRefGoogle Scholar
  2. 2.
    Azevedo LC, Park M, Salluh JI, Rea-Neto A, Souza-Dantas VC, Varaschin P et al (2013) Clinical outcomes of patients requiring ventilatory support in Brazilian intensive care units: a multicenter, prospective, cohort study. Crit Care 17(2):R63. doi: 10.1186/cc12594 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Phua J, Badia JR, Adhikari NK, Friedrich JO, Fowler RA, Singh JM, Scales DC, Stather DR, Li A, Jones A, Gattas DJ, Hallett D, Tomlinson G, Stewart TE, Ferguson ND (2009) Has mortality from acute respiratory distress syndrome decreased over time?: a systematic review. Am J Respir Crit Care Med 179(3):220–227. doi: 10.1164/rccm.200805-722OC PubMedCrossRefGoogle Scholar
  4. 4.
    Gattinoni L, Protti A, Caironi P, Carlesso E (2010) Ventilator-induced lung injury: the anatomical and physiological framework. Crit Care Med 38[10 Suppl]:S539–S548. doi: 10.1097/CCM.0b013e3181f1fcf7 PubMedCrossRefGoogle Scholar
  5. 5.
    Chiumello D, Pristine G, Slutsky AS (1999) Mechanical ventilation affects local and systemic cytokines in an animal model of acute respiratory distress syndrome. Am J Respir Crit Care Med 160(1):109–116. doi: 10.1164/ajrccm.160.1.9803046 PubMedCrossRefGoogle Scholar
  6. 6.
    American Thoracic Society (1999) International consensus conferences in intensive care medicine: ventilator-associated lung injury in ARDS. This official conference report was cosponsored by the American Thoracic Society, The European Society of Intensive Care Medicine, and The Societé de Réanimation de Langue Française, and was approved by the ATS Board of Directors, July 1999. Am J Respir Crit Care Med 160(6):2118–2124Google Scholar
  7. 7.
    Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149(5):1327–1334. doi: 10.1164/ajrccm.149.5.8173774 PubMedCrossRefGoogle Scholar
  8. 8.
    Villar J, Kacmarek RM, Perez-Mendez L, Aguirre-Jaime A (2006) A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med 34(5):1311–1318. doi: 10.1097/01.CCM.0000215598.84885.01 PubMedCrossRefGoogle Scholar
  9. 9.
    Brower RG, Morris A, MacIntyre N, Matthay MA, Hayden D, Thompson T, Clemmer T, Lanken PN, Schoenfeld D, ARDS Clinical Trials Network, National Heart, Lung, and Blood Institute, National Institutes of Health (2003) Effects of recruitment maneuvers in patients with acute lung injury and acute respiratory distress syndrome ventilated with high positive end-expiratory pressure. Crit Care Med 31(11):2592–2597. doi: 10.1097/01.CCM.0000090001.91640.45 PubMedCrossRefGoogle Scholar
  10. 10.
    Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338(6):347–354. doi: 10.1056/NEJM199802053380602 PubMedCrossRefGoogle Scholar
  11. 11.
    Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Cooper DJ, Davies AR, LE Hand, Zhou Q, Thabane L, Austin P, Lapinsky S, Baxter A, Russell J, Skrobik Y, Ronco JJ, Stewart TE, Lung Open Ventilation Study Investigators (2008) Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299(6):637–645. doi: 10.1001/jama.299.6.637 PubMedCrossRefGoogle Scholar
  12. 12.
    Fan E, Wilcox ME, Brower RG, Stewart TE, Mehta S, Lapinsky SE, Meade MO, Ferguson ND (2008) Recruitment maneuvers for acute lung injury: a systematic review. Am J Respir Crit Care Med 178(11):1156–1163. doi: 10.1164/rccm.200802-335OC PubMedCrossRefGoogle Scholar
  13. 13.
    Hodgson C, Keating JL, Holland AE, Davies AR, Smirneos L, Bradley SJ, Tuxen D (2009) Recruitment manoeuvres for adults with acute lung injury receiving mechanical ventilation. Cochrane Database Syst Rev Apr 15(2):CD006667. doi:  10.1002/14651858.CD006667
  14. 14.
    Suzumura EA, Buehler AM, Figueiro M, Laranjeira LN, Normilio-Silva K, Bugano DG, Berwanger O, Cavalcanti AB (2013) Effect of alveolar recruitment maneuvers on mortality of patients with acute respiratory distress syndrome: systematic review and meta-analysis. Intensive Care Med 39[Suppl 2]:374. doi: 10.1007/s00134-013-3095-5 Google Scholar
  15. 15.
    Higgens JPT, Green S (eds) (2009) Cochrane handbook for systematic reviews of interventions. Wiley-Blackwell, LondonGoogle Scholar
  16. 16.
    Moher D, Liberati A, Tetzlaff J, Altman DG; for PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62:1006–1012. doi: 10.1016/j.jclinepi.2009.06.005 PubMedCrossRefGoogle Scholar
  17. 17.
    The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308. doi: 10.1056/NEJM200005043421801 CrossRefGoogle Scholar
  18. 18.
    Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, Schoenfeld D, Thompson BT, National Heart, Lung, and Blood Institute ARDS Clinical Trials Network (2004) Higher vs. lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351(4):327–336. doi: 10.1056/NEJMoa032193 PubMedCrossRefGoogle Scholar
  19. 19.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560. doi: 10.1136/bmj.327.7414.557 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Sterne JA, Egger M, Smith GD (2001) Systematic reviews in health care: investigating and dealing with publication and other biases in meta-analysis. BMJ 323(7304):101–105. doi: 10.1136/bmj.323.7304.101 PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Egger M, Smith GD (1998) Bias in location and selection of studies. BMJ 316:61–66. doi: 10.1136/bmj.316.7124.61 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Briel M, Meade M, Mercat A, Brower RG, Talmor D, Walter SD, Slutsky AS, Pullenayegum E, Zhou Q, Cook D, Brochard L, Richard JC, Lamontagne F, Bhatnagar N, Stewart TE, Guyatt G (2010) Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 303(9):865–873. doi: 10.1001/jama.2010.218 PubMedCrossRefGoogle Scholar
  23. 23.
    Pogue J, Yusuf S (1997) Cumulating evidence from randomized trials: utilizing sequential monitoring boundaries for cumulative meta-analysis. Control Clin Trials 18(6):580–593. doi: 10.1016/S0197-2456(97)00051-2 PubMedCrossRefGoogle Scholar
  24. 24.
    Devereaux PJ, Beattie WS, Choi PT, Badner NH, Guyatt GH, Villar JC, Cinà CS, Leslie K, Jacka MJ, Montori VM, Bhandari M, Avezum A, Cavalcanti AB, Giles JW, Schricker T, Yang H, Jakobsen CJ, Yusuf S (2005) How strong is the evidence for the use of perioperative beta blockers in non-cardiac surgery? Systematic review and meta-analysis of randomised controlled trials. BMJ 331(7512):313–321. doi: 10.1136/bmj.38503.623646.8F PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Guyatt GH, Oxman AD, Schünemann HJ (2011) GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology. J Clin Epidemiol 64(4):380–382. doi: 10.1016/j.jclinepi.2010.09.011 PubMedCrossRefGoogle Scholar
  26. 26.
    Kacmarek RM (2007) ARDSnet protocol vs. open lung approach in ARDS. registration number: NCT00431158. Available at: Accessed 01 Jul 2014
  27. 27.
    Lim CM, Jung H, Koh Y, Lee JS, Shim TS, Lee SD, Kim WS, Kim DS, Kim WD (2003) Effect of alveolar recruitment maneuver in early acute respiratory distress syndrome according to antiderecruitment strategy, etiological category of diffuse lung injury, and body position of the patient. Crit Care Med 31(2):411–418. doi: 10.1097/01.CCM.0000048631.88155.39 PubMedCrossRefGoogle Scholar
  28. 28.
    Park KJ, Lee YJ, Oh YJ, Lee KS, Sheen SS, Hwang SC (2003) Combined effects of inhaled nitric oxide and a recruitment maneuver in patients with acute respiratory distress syndrome. Yonsei Med J 44(2):219–226PubMedGoogle Scholar
  29. 29.
    Long Y, Liu DW, Zhou X, Liu HZ, Guo ZJ, Huang H, Wang XT, Rui X, Cui N (2006) The application of individualized ventilation strategies in acute respiratory distress syndrome. Zhonghua Jie He He Hu Xi Za Zhi 29(8):549–553PubMedGoogle Scholar
  30. 30.
    Wang XZ, Lu CJ, Gao FQ, Li XH, Hao F, Ning FY (2007) Comparison of the effects of BiPAP ventilation combined with lung recruitment maneuvers and low tidal volume A/C ventilation in patients with acute respiratory distress syndrome. Zhonghua Jie He He Hu Xi Za Zhi 30(1):44–47PubMedGoogle Scholar
  31. 31.
    Huh JW, Jung H, Choi HS, Hong SB, Lim CM, Koh Y (2009) Efficacy of positive end-expiratory pressure titration after the alveolar recruitment manoeuvre in patients with acute respiratory distress syndrome. Crit Care 13(1):R22. doi: 10.1186/cc7725 PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Xi XM, Jiang L, Zhu B, RM group (2010) Clinical efficacy and safety of recruitment maneuver in patients with acute respiratory distress syndrome using low tidal volume ventilation: a multicenter randomized controlled clinical trial. Chin Med J 123(21):3100–3105PubMedGoogle Scholar
  33. 33.
    Hodgson CL, Tuxen DV, Davies AR, Bailey MJ, Higgins AM, Holland AE, Keating JL, Pilcher DV, Westbrook AJ, Cooper DJ, Nichol AD (2011) A randomised controlled trial of an open lung strategy with staircase recruitment, titrated PEEP and targeted low airway pressures in patients with acute respiratory distress syndrome. Crit Care 15(3):R133. doi: 10.1186/cc10249 PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Liu WL, Wang CM, Chen WL (2011) Effects of recruitment maneuvers in patients with early acute lung injury and acute respiratory distress syndrome. Respirology 16[Suppl 2]:S258. doi: 10.1111/j.1400-1843.2011.02071.x Google Scholar
  35. 35.
    Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149(3 Pt 1):818–824. doi: 10.1164/ajrccm.149.3.7509706 PubMedCrossRefGoogle Scholar
  36. 36.
    Ferguson ND, Fan E, Camporota L, Antonelli M, Anzueto A, Beale R, Brochard L, Brower R, Esteban A, Gattinoni L, Rhodes A, Slutsky AS, Vincent JL, Rubenfeld GD, Thompson BT, Ranieri VM (2012) The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med 38(10):1573–1582. doi: 10.1007/s00134-012-2682-1 PubMedCrossRefGoogle Scholar
  37. 37.
    Barbas CS, de Matos GF, Pincelli MP, da Rosa Borges E, Antunes T, de Barros JM, Okamoto V, Borges JB, Amato MB, de Carvalho CR (2005) Mechanical ventilation in acute respiratory failure: recruitment and high positive end-expiratory pressure are necessary. Curr Opin Crit Care 11(1):18–28PubMedCrossRefGoogle Scholar
  38. 38.
    Borges JB, Okamoto VN, Matos GF, Caramez MP, Arantes PR, Barros F, Souza CE, Victorino JA, Kacmarek RM, Barbas CS, Carvalho CR, Amato MB (2006) Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med 174(3):268–278. doi: 10.1164/rccm.200506-976OC PubMedCrossRefGoogle Scholar
  39. 39.
    de Matos GF, Stanzani F, Passos RH, Fontana MF, Albaladejo R, Caserta RE, Santos DC, Borges JB, Amato MB, Barbas CS (2012) How large is the lung recruitability in early acute respiratory distress syndrome: a prospective case series of patients monitored by computed tomography. Crit Care 16(1):R4. doi: 10.1186/cc10602 PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Oczenski W, Hörmann C, Keller C, Lorenzl N, Kepka A, Schwarz S, Fitzgerald RD (2004) Recruitment maneuvers after a positive end-expiratory pressure trial do not induce sustained effects in early adult respiratory distress syndrome. Anesthesiology 101(3):620–625PubMedCrossRefGoogle Scholar
  41. 41.
    Meade MO, Guyatt GH, Cook DJ, Lapinsky SE, Hand L, Griffith L, Stewart TE (2002) Physiologic randomized pilot study of a lung recruitment maneuver in acute lung injury. Am J Respir Crit Care Med 165:A683CrossRefGoogle Scholar
  42. 42.
    Stewart TE, Cooper J, Laufer B, Lapinsky SE, Langevin S, Granton JT, Muscedere J, Ward M, Woolfe C, Lesur O (2007) Complications of recruitment maneuvers in a multicenter trial of lung protective ventilation in ALI/ARDS. Am J Respir Crit Care Med 175:A943CrossRefGoogle Scholar
  43. 43.
    ART Investigators (2012) Rationale, study design, and analysis plan of the alveolar recruitment for ARDS Trial (ART): study protocol for a randomized controlled trial. Trials 13:153. doi: 10.1186/1745-6215-13-153 CrossRefGoogle Scholar
  44. 44.
    Hodgson C, Nichol A (2012) A multi-centre trial of an open lung strategy including permissive hypercapnia, alveolar recruitment and low airway pressure in patients with acute respiratory distress syndrome (PHARLAP). registration number: NCT00431158. Available at: Accessed 1 July 2014

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2014

Authors and Affiliations

  • Erica Aranha Suzumura
    • 1
    • 2
  • Mabel Figueiró
    • 1
  • Karina Normilio-Silva
    • 1
    • 2
  • Lígia Laranjeira
    • 1
  • Claudia Oliveira
    • 1
  • Anna Maria Buehler
    • 1
  • Diogo Bugano
    • 1
  • Marcelo Britto Passos Amato
    • 2
  • Carlos Roberto Ribeiro Carvalho
    • 2
  • Otavio Berwanger
    • 1
  • Alexandre Biasi Cavalcanti
    • 1
    • 2
  1. 1.Research Institute of the Hospital do Coração (Heart Hospital)—IEP/HCorSão PauloBrazil
  2. 2.Faculdade de Medicina da Universidade de São Paulo—FMUSPSão PauloBrazil

Personalised recommendations