Intensive Care Medicine

, Volume 40, Issue 6, pp 855–862 | Cite as

Blood glucose level and outcome after cardiac arrest: insights from a large registry in the hypothermia era

  • Fabrice Daviaud
  • Florence Dumas
  • Nadège Demars
  • Guillaume Geri
  • Adrien Bouglé
  • Tristan Morichau-Beauchant
  • Yên-Lan Nguyen
  • Wulfran Bougouin
  • Frédéric Pène
  • Julien Charpentier
  • Alain Cariou
Original

Abstract

Introduction

The influence of blood glucose (BG) level during the post-resuscitation period after out-of-hospital cardiac arrest (OHCA) is still debated. To evaluate the relationship between blood glucose level and outcome, we included the median glycemia and its maximal amplitude over the first 48 h following ICU admission in an analysis of outcome predictors.

Methods

We conducted a database study in a cardiac arrest center in Paris, France. Between 2006 and 2010, we included 381 patients who were all resuscitated from an OHCA. A moderate glycemic control was applied in all patients. The median glycemia and the largest change over the first 48 h were included in a multivariate analysis that was performed to determine parameters associated with a favorable outcome.

Results

Of the 381 patients, 136 (36 %) had a favorable outcome (CPC 1–2). Median BG level was 7.6 mmol/L (6.3–9.8) in patients with a favorable outcome compared to 9.0 mmol/L (IQR 7.1–10.6) for patients with an unfavorable outcome (p < 0.01). Median BG level variation was 7.1 (4.2–11) and 9.6 (5.9–13.6) mmol/L in patients with and without a favorable outcome, respectively (p < 0.01). In multivariate analysis, an increased median BG level over the first 48 h was found to be an independent predictor of poor issue [OR = 0.43; 95 % CI (0.24–0.78), p = 0.006]. Finally a progressive increase in median BG level was associated with a progressive increase in the proportion of patients with a poor outcome.

Conclusion

We observed a relationship between high blood glucose level and outcome after cardiac arrest. These results suggest the need to test a strategy combining both control of glycemia and minimization of glycemic variations for its ability to improve post-resuscitation care.

Keywords

Cardiac arrest Neurologic outcome Blood glucose Glycemic variations Caloric input Insulin intake 

Notes

Conflicts of interest

The authors declare no conflict of interest.

Supplementary material

134_2014_3269_MOESM1_ESM.docx (343 kb)
Supplementary material Fig. 1: decision algorithm for post-CA patients (DOCX 343 kb)
134_2014_3269_MOESM2_ESM.doc (32 kb)
Supplementary material Table 1: insulin administration protocol. Outcome assessment and life support treatment withdrawal (DOC 31 kb)

References

  1. 1.
    Mongardon N, Dumas F, Ricome S et al (2011) Postcardiac arrest syndrome: from immediate resuscitation to long-term outcome. Ann Intensive Care 1:45. doi: 10.1186/2110-5820-1-45 PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Siemkowicz E (1981) Hyperglycemia in the reperfusion period hampers recovery from cerebral ischemia. Acta Neurol Scand 64:207–216PubMedCrossRefGoogle Scholar
  3. 3.
    Siemkowicz E, Hansen AJ (1978) Clinical restitution following cerebral ischemia in hypo-, normo- and hyperglycemic rats. Acta Neurol Scand 58:1–8PubMedCrossRefGoogle Scholar
  4. 4.
    Welsh FA, Ginsberg MD, Rieder W, Budd WW (1980) Deleterious effect of glucose pretreatment on recovery from diffuse cerebral ischemia in the cat. II. Regional metabolite levels. Stroke 11:355–363PubMedCrossRefGoogle Scholar
  5. 5.
    Gore DC, Chinkes D, Heggers J et al (2001) Association of hyperglycemia with increased mortality after severe burn injury. J Trauma 51:540–544PubMedCrossRefGoogle Scholar
  6. 6.
    Niemann JT, Youngquist S, Rosborough JP (2011) Does early postresuscitation stress hyperglycemia affect 72-hour neurologic outcome? Preliminary observations in the Swine model. Prehosp Emerg Care 15:405–409. doi: 10.3109/10903127.2011.569847 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Escolar JC, Hoo-Paris R, Castex C, Sutter BC (1987) Effect of low temperatures on glucose-induced insulin secretion and ionic fluxes in rat pancreatic islets. J Endocrinol 115:225–231PubMedCrossRefGoogle Scholar
  8. 8.
    Sasaki Y, Takahashi H, Aso H et al (1982) Effects of cold exposure on insulin and glucagon secretion in sheep. Endocrinology 111:2070–2076. doi: 10.1210/endo-111-6-2070 PubMedCrossRefGoogle Scholar
  9. 9.
    Nielsen N, Sunde K, Hovdenes J et al (2011) Adverse events and their relation to mortality in out-of-hospital cardiac arrest patients treated with therapeutic hypothermia. Crit Care Med 39:57–64. doi: 10.1097/CCM.0b013e3181fa4301 PubMedCrossRefGoogle Scholar
  10. 10.
    Nurmi J, Boyd J, Anttalainen N et al (2012) Early increase in blood glucose in patients resuscitated from out-of-hospital ventricular fibrillation predicts poor outcome. Diabetes Care 35:510–512. doi: 10.2337/dc11-1478 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Cueni-Villoz N, Devigili A, Delodder F et al (2011) Increased blood glucose variability during therapeutic hypothermia and outcome after cardiac arrest. Crit Care Med 39:2225–2231. doi: 10.1097/CCM.0b013e31822572c9 PubMedCrossRefGoogle Scholar
  12. 12.
    Peberdy MA, Callaway CW, Neumar RW et al (2010) Part 9: post-cardiac arrest care: 2010 American Heart Association Guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 122:S768–S786. doi: 10.1161/CIRCULATIONAHA.110.971002 PubMedCrossRefGoogle Scholar
  13. 13.
    Daviaud F (2013) Blood glucose level and outcome after cardiac arrest: insights from a large registry in the hypothermia era. European Society of Intensive Care Medicine, ParisGoogle Scholar
  14. 14.
    Safar P, Bircher NG (1988) Cardiopulmonary cerebral resuscitation: basic and advanced cardiac and trauma life support: an introduction to resuscitation medicine. Saunders, LondonGoogle Scholar
  15. 15.
    Phelps R, Dumas F, Maynard C et al (2013) Cerebral performance category and long-term prognosis following out-of-hospital cardiac arrest. Crit Care Med 41:1252–1257. doi: 10.1097/CCM.0b013e31827ca975 PubMedCrossRefGoogle Scholar
  16. 16.
    Jacobs I, Nadkarni V, Bahr J et al (2004) Cardiac arrest and cardiopulmonary resuscitation outcome reports: update and simplification of the Utstein templates for resuscitation registries: a statement for healthcare professionals from a task force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian Resuscitation Council, New Zealand Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Councils of Southern Africa). Circulation 110:3385–3397. doi: 10.1161/01.CIR.0000147236.85306.15 PubMedCrossRefGoogle Scholar
  17. 17.
    Sterz F, Holzer M, Roine R et al (2003) Hypothermia after cardiac arrest: a treatment that works. Curr Opin Crit Care 9:205–210PubMedCrossRefGoogle Scholar
  18. 18.
    Weekers F, Giulietti A-P, Michalaki M et al (2003) Metabolic, endocrine, and immune effects of stress hyperglycemia in a rabbit model of prolonged critical illness. Endocrinology 144:5329–5338. doi: 10.1210/en.2003-0697 PubMedCrossRefGoogle Scholar
  19. 19.
    Capes SE, Hunt D, Malmberg K et al (2001) Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: a systematic overview. Stroke 32:2426–2432PubMedCrossRefGoogle Scholar
  20. 20.
    Longstreth WT Jr, Inui TS (1984) High blood glucose level on hospital admission and poor neurological recovery after cardiac arrest. Ann Neurol 15:59–63. doi: 10.1002/ana.410150111 PubMedCrossRefGoogle Scholar
  21. 21.
    Skrifvars MB, Pettilä V, Rosenberg PH, Castrén M (2003) A multiple logistic regression analysis of in-hospital factors related to survival at six months in patients resuscitated from out-of-hospital ventricular fibrillation. Resuscitation 59:319–328PubMedCrossRefGoogle Scholar
  22. 22.
    Nielsen N, Wetterslev J, Cronberg T et al (2013) Targeted temperature management at 33°C versus 36°C after cardiac arrest. N Engl J Med 369:2197–2206. doi: 10.1056/NEJMoa1310519 PubMedCrossRefGoogle Scholar
  23. 23.
    Monnier L, Mas E, Ginet C et al (2006) Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 295:1681–1687. doi: 10.1001/jama.295.14.1681 PubMedCrossRefGoogle Scholar
  24. 24.
    Quagliaro L, Piconi L, Assaloni R et al (2003) Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes 52:2795–2804PubMedCrossRefGoogle Scholar
  25. 25.
    Risso A, Mercuri F, Quagliaro L et al (2001) Intermittent high glucose enhances apoptosis in human umbilical vein endothelial cells in culture. Am J Physiol Endocrinol Metab 281:E924–E930PubMedGoogle Scholar
  26. 26.
    Watada H, Azuma K, Kawamori R (2007) Glucose fluctuation on the progression of diabetic macroangiopathy–new findings from monocyte adhesion to endothelial cells. Diabetes Res Clin Pract 77(Suppl 1):S58–S61. doi: 10.1016/j.diabres.2007.01.034 PubMedCrossRefGoogle Scholar
  27. 27.
    Ali NA, O’Brien JM Jr, Dungan K et al (2008) Glucose variability and mortality in patients with sepsis. Crit Care Med 36:2316–2321. doi: 10.1097/CCM.0b013e3181810378 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Egi M, Bellomo R, Stachowski E et al (2006) Variability of blood glucose concentration and short-term mortality in critically ill patients. Anesthesiology 105:244–252PubMedCrossRefGoogle Scholar
  29. 29.
    Krinsley JS (2008) Glycemic variability: a strong independent predictor of mortality in critically ill patients. Crit Care Med 36:3008–3013. doi: 10.1097/CCM.0b013e31818b38d2 PubMedCrossRefGoogle Scholar
  30. 30.
    Oksanen T, Skrifvars MB, Varpula T et al (2007) Strict versus moderate glucose control after resuscitation from ventricular fibrillation. Intensive Care Med 33:2093–2100. doi: 10.1007/s00134-007-0876-8 PubMedCrossRefGoogle Scholar
  31. 31.
    Mongardon N, Perbet S, Lemiale V et al (2011) Infectious complications in out-of-hospital cardiac arrest patients in the therapeutic hypothermia era. Crit Care Med 39:1359–1364. doi: 10.1097/CCM.0b013e3182120b56 PubMedCrossRefGoogle Scholar
  32. 32.
    Lemiale V, Dumas F, Mongardon N et al (2013) Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort. Intensive Care Med 39:1972–1980. doi: 10.1007/s00134-013-3043-4 PubMedCrossRefGoogle Scholar
  33. 33.
    Mackenzie IMJ, Whitehouse T, Nightingale PG (2011) The metrics of glycaemic control in critical care. Intensive Care Med 37:435–443. doi: 10.1007/s00134-010-2103-2 PubMedCrossRefGoogle Scholar
  34. 34.
    Sylvain HF, Pokorny ME, English SM et al (1995) Accuracy of fingerstick glucose values in shock patients. Am J Crit Care 4:44–48PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2014

Authors and Affiliations

  • Fabrice Daviaud
    • 1
    • 3
  • Florence Dumas
    • 2
    • 3
    • 4
  • Nadège Demars
    • 1
  • Guillaume Geri
    • 1
    • 3
  • Adrien Bouglé
    • 1
    • 3
  • Tristan Morichau-Beauchant
    • 1
    • 3
  • Yên-Lan Nguyen
    • 1
    • 3
  • Wulfran Bougouin
    • 1
    • 3
  • Frédéric Pène
    • 1
    • 3
  • Julien Charpentier
    • 1
    • 3
  • Alain Cariou
    • 1
    • 3
    • 4
  1. 1.Medical Intensive Care UnitCochin University Hospital, Assistance Publique-Hôpitaux de ParisParisFrance
  2. 2.Emergency DepartmentCochin University Hospital, Assistance Publique-Hôpitaux de ParisParisFrance
  3. 3.Paris Descartes UniversityParisFrance
  4. 4.INSERM U970 (Team 4)ParisFrance

Personalised recommendations