Intensive Care Medicine

, Volume 40, Issue 4, pp 504–512 | Cite as

Enteral omega-3 fatty acid supplementation in adult patients with acute respiratory distress syndrome: a systematic review of randomized controlled trials with meta-analysis and trial sequential analysis

  • Daojun Zhu
  • Yi Zhang
  • Shuo Li
  • Lu Gan
  • Huaizhi Feng
  • Wei Nie
Systematic Review



Controversy remains as to whether enteral supplementation of ω-3 fatty acids (FA) could improve outcomes in patients with acute respiratory distress syndrome (ARDS). Thus, we did a meta-analysis and aimed to investigate the benefit and harm of enteral ω-3 FA supplementation in adult patients with ARDS.


Databases including PubMed, Embase, the Cochrane Register of Controlled Trials, and Google Scholar were searched to find relevant articles. Randomized controlled trials (RCTs) comparing enteral ω-3 FA supplementation with a control or placebo intervention in adult patients with ARDS were included. The primary outcome was all-cause 28-day mortality. We used the Cochrane Collaboration methodology.


Seven RCTs with 955 adult patients qualified for inclusion, and all the selected trials were considered as at high risk of bias. The use of enteral ω-3 FA did not significantly reduce all-cause 28-day mortality [relative risk (RR), 0.90; 95 % confidence intervals (CI), 0.68–1.18; p = 0.44; I 2 = 31 %; random effects]. Trial sequential analysis indicated lack of firm evidence for a 20 % RR reduction in all-cause 28-day mortality. PaO2/FiO2 ratio was significantly increased in the ω-3 FA group on day 4 [weighted mean difference (WMD), 45.14; 95 % CI, 16.77–73.51; p = 0.002; I 2 = 86 %; random effects] and day 7 (WMD, 33.10; 95 % CI, 1.67–64.52; p = 0.04; I 2 = 88 %; random effects). Meta-analysis using a random effects model showed no significant differences in ventilator-free days (VFD) (WMD, 2.47 days; 95 % CI, −2.85 to 7.79; p = 0.36; I 2 = 91 %) or intensive care unit-free days (ICU) (WMD, 2.31 days; 95 % CI, −2.34 to 6.97; p = 0.33; I 2 = 89 %) between the two groups.


Among patients with ARDS, enteral supplementation of ω-3 FA seemed ineffective regarding all-cause 28-day mortality, VFD, and ICU-free days. Routine use of enteral ω-3 FA cannot be recommended based on the available evidence.


Acute respiratory distress syndrome ω-3 fatty acids Mortality Meta-analysis 


Conflicts of interest


Supplementary material

134_2014_3244_MOESM1_ESM.docx (180 kb)
Supplementary material 1 (DOCX 180 kb)


  1. 1.
    Villar J, Pérez-Méndez L, Blanco J, Añón JM, Blanch L, Belda J, Santos-Bouza A, Fernández RL, Kacmarek RM (2013) Spanish Initiative for Epidemiology, Stratification, and Therapies for ARDS (SIESTA) Network: A universal definition of ARDS: the PaO2/FiO2 ratio under a standard ventilatory setting––a prospective, multicenter validation study. Intensive Care Med 39(4):583–592PubMedCrossRefGoogle Scholar
  2. 2.
    Ferguson ND, Fan E, Camporota L, Antonelli M, Anzueto A, Beale R, Brochard L, Brower R, Esteban A, Gattinoni L, Rhodes A, Slutsky AS, Vincent JL, Rubenfeld GD, Thompson BT, Ranieri VM (2012) The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med 38:1573–1582PubMedCrossRefGoogle Scholar
  3. 3.
    Stapleton RD, Wang BM, Hudson LD, Rubenfeld GD, Caldwell ES, Steinberg KP (2005) Causes and timing of death in patients with ARDS. Chest 128:525–532PubMedCrossRefGoogle Scholar
  4. 4.
    Villar J, Blanco J, Anon JM, Santos-Bouza A, Blanch L, Ambros A, Gandia F, Carriedo D, Mosteiro F, Basaldua S, Fernandez RL, Kacmarek RM (2011) The ALIEN study: incidence and outcome of acute respiratory distress syndrome in the era of lung protective ventilation. Intensive Care Med 37:1932–1941PubMedCrossRefGoogle Scholar
  5. 5.
    Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, Stern EJ, Hudson LD (2005) Incidence and outcomes of acute lung injury. N Engl J Med 353:1685–1693PubMedCrossRefGoogle Scholar
  6. 6.
    McClave SA, Martindale RG, Vanek VW, McCarthy M, Roberts P, Taylor B, Ochoa JB, Napolitano L, Cresci G (2009) Guidelines for the provision and assessment of nutrition support therapy in the adult critically III patient: society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr 33:277–316PubMedCrossRefGoogle Scholar
  7. 7.
    Pacht ER, DeMichele SJ, Nelson JL, Hart J, Wennberg AK, Gadek JE (2003) Enteral nutrition with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants reduces alveolar inflammatory mediators and protein influx in patients with acute respiratory distress syndrome. Crit Care Med 31:491–500PubMedCrossRefGoogle Scholar
  8. 8.
    Pontes-Arruda A, Demichele S, Seth A, Singer P (2008) The use of an inflammation-modulating diet in patients with acute lung injury or acute respiratory distress syndrome: a meta-analysis of outcome data. JPEN J Parenter Enteral Nutr 32:596–605PubMedCrossRefGoogle Scholar
  9. 9.
    Grau-Carmona T, Moran-Garcia V, Garcia-de-Lorenzo A, Heras-de-la-Calle G, Quesada-Bellver B, Lopez-Martinez J, Gonzalez-Fernandez C, Montejo-Gonzalez JC, Blesa-Malpica A, Albert-Bonamusa I, Bonet-Saris A, Herrero-Meseguer JI, Mesejo A, Acosta J (2011) Effect of an enteral diet enriched with eicosapentaenoic acid, gamma-linolenic acid and anti-oxidants on the outcome of mechanically ventilated, critically ill, septic patients. Clin Nutr 30:578–584PubMedCrossRefGoogle Scholar
  10. 10.
    Rice TW, Wheeler AP, Thompson BT, deBoisblanc BP, Steingrub J, Rock P (2011) Enteral omega-3 fatty acid, gamma-linolenic acid, and antioxidant supplementation in acute lung injury. JAMA 306:1574–1581PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Stapleton RD, Martin TR, Weiss NS, Crowley JJ, Gundel SJ, Nathens AB, Akhtar SR, Ruzinski JT, Caldwell E, Curtis JR, Heyland DK, Watkins TR, Parsons PE, Martin JM, Wurfel MM, Hallstrand TS, Sims KA, Neff MJ (2011) A phase II randomized placebo-controlled trial of omega-3 fatty acids for the treatment of acute lung injury. Crit Care Med 39:1655–1662PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Elamin EM, Miller AC, Ziad S (2012) Immune enteral nutrition can improve outcomes in medical-surgical patients with ARDS: a prospective randomized controlled trial. J Nutr Disord Ther 2:109. doi: 10.4172/jndt.1000109 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Higgins JPT, Green S (2011) Cochrane handbook for systematic reviews of interventions Version 5.1.0. The Cochrane Collaboration. Accessed 28 Jan 2014
  14. 14.
    Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62:1006–1012CrossRefGoogle Scholar
  15. 15.
    Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558PubMedCrossRefGoogle Scholar
  16. 16.
    Calder PC (2010) The 2008 ESPEN Sir David Cuthbertson Lecture: fatty acids and inflammation––from the membrane to the nucleus and from the laboratory bench to the clinic. Clin Nutr 29:5–12PubMedCrossRefGoogle Scholar
  17. 17.
    Altman DG, Bland JM (2003) Interaction revisited: the difference between two estimates. BMJ 326:219PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Sweeting MJ, Sutton AJ, Lambert PC (2004) What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data. Stat Med 23:1351–1375PubMedCrossRefGoogle Scholar
  19. 19.
    Brok J, Thorlund K, Gluud C, Wetterslev J (2008) Trial sequential analysis reveals insufficient information size and potentially false positive results in many meta-analyses. J Clin Epidemiol 61:763–769PubMedCrossRefGoogle Scholar
  20. 20.
    Wetterslev J, Thorlund K, Brok J, Gluud C (2009) Estimating required information size by quantifying diversity in random-effects model meta-analyses. BMC Med Res Methodol 9:86PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Gadek JE, DeMichele SJ, Karlstad MD, Pacht ER, Donahoe M, Albertson TE, Van Hoozen C, Wennberg AK, Nelson JL, Noursalehi M (1999) Effect of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in patients with acute respiratory distress syndrome. Enteral Nutrition in ARDS Study Group. Crit Care Med 27:1409–1420PubMedCrossRefGoogle Scholar
  22. 22.
    Pontes-Arruda A, Aragao AM, Albuquerque JD (2006) Effects of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in mechanically ventilated patients with severe sepsis and septic shock. Crit Care Med 34:2325–2333PubMedCrossRefGoogle Scholar
  23. 23.
    Singer P, Theilla M, Fisher H, Gibstein L, Grozovski E, Cohen J (2006) Benefit of an enteral diet enriched with eicosapentaenoic acid and gamma-linolenic acid in ventilated patients with acute lung injury. Crit Care Med 34:1033–1038PubMedCrossRefGoogle Scholar
  24. 24.
    Manzanares W, Dhaliwal R, Jurewitsch B, Stapleton RD, Jeejeebhoy KN, Heyland DK (2013) Alternative lipid emulsions in the critically ill: a systematic review of the evidence. Intensive Care Med 39:1683–1694PubMedCrossRefGoogle Scholar
  25. 25.
    Lekka ME, Liokatis S, Nathanail C, Galani V, Nakos G (2004) The impact of intravenous fat emulsion administration in acute lung injury. Am J Respir Crit Care Med 169:638–644PubMedCrossRefGoogle Scholar
  26. 26.
    Zambon M, Vincent JL (2008) Mortality rates for patients with acute lung injury/ARDS have decreased over time. Chest 133:1120–1127PubMedCrossRefGoogle Scholar
  27. 27.
    Antonelli M, Bonten M, Chastre J, Citerio G, Conti G, Curtis JR, De Backer D, Hedenstierna G, Joannidis M, Macrae D, Mancebo J, Maggiore SM, Mebazaa A, Preiser JC, Rocco P, Timsit JF, Wernerman J, Zhang H (2012) Year in review in Intensive Care Medicine 2011: III. ARDS and ECMO, weaning, mechanical ventilation, noninvasive ventilation, pediatrics and miscellanea. Intensive Care Med 38:542–556PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Umezawa Makikado LD, Flordelís Lasierra JL, Pérez-Vela JL, Montejo González JC (2013) Nutrition support during extracorporeal membrane oxygenation (ECMO) in adults. Intensive Care Med 39(12):2240PubMedCrossRefGoogle Scholar
  29. 29.
    Giudetti AM, Cagnazzo R (2012) Beneficial effects of n-3 PUFA on chronic airway inflammatory diseases. Prostaglandins Other Lipid Mediat 99:57–67PubMedCrossRefGoogle Scholar
  30. 30.
    Ciani O, Buyse M, Garside R, Pavey T, Stein K, Sterne JA, Taylor RS (2013) Comparison of treatment effect sizes associated with surrogate and final patient relevant outcomes in randomised controlled trials: meta-epidemiological study. BMJ 346:f457PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2014

Authors and Affiliations

  • Daojun Zhu
    • 1
  • Yi Zhang
    • 2
  • Shuo Li
    • 2
  • Lu Gan
    • 3
    • 4
  • Huaizhi Feng
    • 2
  • Wei Nie
    • 5
  1. 1.Department of Anesthesiology and Critical CareWest China Hospital of Sichuan UniversityChengduChina
  2. 2.Department of Clinical NutritionThe 452nd Hospital of PLAChengduChina
  3. 3.Department of Medical OncologyCancer Hospital of Fudan UniversityShanghaiChina
  4. 4.Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
  5. 5.Department of Respiratory MedicineShanghai Changzheng Hospital, Second Military Medical UniversityShanghaiChina

Personalised recommendations