Intensive Care Medicine

, Volume 39, Issue 12, pp 2126–2134 | Cite as

Bleeding and risk of death with hydroxyethyl starch in severe sepsis: post hoc analyses of a randomized clinical trial

  • Nicolai HaaseEmail author
  • Jørn Wetterslev
  • Per Winkel
  • Anders Perner
Original Article



We aimed to characterize the degree and clinical importance of bleeding in patients treated with hydroxyethyl starch (HES).


In post hoc analyses, we examined the associations between fluid assignment, hemostatic variables, bleeding events, transfusions, and death among 798 patients with severe sepsis randomized to fluid resuscitation with HES 130/0.42 versus Ringer’s acetate. We used Cox regression analysis adjusted for fluid assignment and baseline characteristics.


Overall, 93 (23 %) patients assigned to HES versus 60 (15 %) patients assigned to Ringer’s acetate bled in the ICU (relative risk (RR) 1.55; 95 % CI 1.16–2.08; P = 0.003). Of these, 38 and 25 (RR 1.52; 95 % CI 0.94–2.48; P = 0.09), respectively, had severe bleeding (intracranial or concomitant transfusion with three units of red blood cells). Most patients bled in the first days after randomization when most trial fluid was given. The hazards ratios for occurrence of any bleeding and severe bleeding in patients treated with HES versus Ringer’s acetate were 1.70 (95 % CI 1.23–2.36; P = 0.001) and 1.55 (95 % CI 0.93–2.56; P = 0.09), respectively. The adjusted hazard ratios for death among patients with any bleeding and severe bleeding compared to those without bleeding were 1.36 (95 % CI 1.04–1.79; P = 0.03) and 1.74 (95 % CI 1.20–2.53; P = 0.004), respectively.


In post hoc analyses of patient with severe sepsis, treatment with HES increased the risk of bleeding which was associated with increased risk of death. HES-induced bleeding complications may negatively affect outcome in patients with severe sepsis.


Hydroxyethyl starch Sepsis Coagulopathy Bleeding Mortality 


Conflicts of interest

A.P. was the sponsor-investigator of the Scandinavian Starch for Severe Sepsis/Septic Shock (6S) trial and J.W. and N.H. were members of the steering committee. The 6S trial was funded by the Danish Research Council, the Rigshospitalet Research Council, and the Scandinavian Society of Anaesthesiology and Intensive Care Medicine (the ACTA Foundation). B Braun Medical delivered trial fluid to all sites free of charge. Neither the funders nor B Braun Medical had an influence on the protocol, trial conduct, data analyses, or reporting of the 6S trial. A.P. is head of research in his department, which receives research funds from Fresenius Kabi, Germany, Cosmed, Italy, and BioPorto Diagnostics, Denmark. B Braun Medical has covered his travel expenses for presenting 6S trial data at the German Anaesthetic Congress 2012. A.P. has received honoraria from Ferring Pharmaceuticals and LFB. P.W. declares that he has no conflict of interests.

Supplementary material

134_2013_3111_MOESM1_ESM.pdf (148 kb)
Supplementary material 1 (PDF 147 kb)


  1. 1.
    Finfer S, Liu B, Taylor C, Bellomo R, Billot L, Cook D, Du B, McArthur C, Myburgh J (2010) Resuscitation fluid use in critically ill adults: an international cross-sectional study in 391 intensive care units. Crit Care 14:R185. doi: 10.1186/cc9293 PubMedCrossRefGoogle Scholar
  2. 2.
    Groeneveld A, Navickis R, Wilkes M (2011) Update on the comparative safety of colloids: a systematic review of clinical studies. Ann Surg 253:470–483. doi: 10.1097/SLA.0b013e318202ff00 PubMedCrossRefGoogle Scholar
  3. 3.
    Navickis RJ, Haynes GR, Wilkes MM (2012) Effect of hydroxyethyl starch on bleeding after cardiopulmonary bypass: a meta-analysis of randomized trials. J Thorac Cardiovasc Surg 144:223–230. doi: 10.1016/j.jtcvs.2012.04.009 PubMedCrossRefGoogle Scholar
  4. 4.
    Hartog CS, Reuter D, Loesche W, Hofmann M, Reinhart K (2011) Influence of hydroxyethyl starch (HES) 130/0.4 on hemostasis as measured by viscoelastic device analysis: a systematic review. Intensive Care Med 37:1725–1737. doi: 10.1007/s00134-011-2385-z PubMedCrossRefGoogle Scholar
  5. 5.
    Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Åneman A, Madsen KR, Møller MH, Elkjær JM, Poulsen LM, Bendtsen A, Winding R, Steensen M, Berezowicz P, Søe-Jensen P, Bestle M, Strand K, Wiis J, White JO, Thornberg KJ, Quist L, Nielsen J, Andersen LH, Holst LB, Thormar K, Kjældgaard A-L, Fabritius ML, Mondrup F, Pott FC, Møller TP, Winkel P, Wetterslev J (2012) Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med 367:124–134. doi: 10.1056/NEJMoa1204242 PubMedCrossRefGoogle Scholar
  6. 6.
    Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, Moerer O, Gruendling M, Oppert M, Grond S, Olthoff D, Jaschinski U, John S, Rossaint R, Welte T, Schaefer M, Kern P, Kuhnt E, Kiehntopf M, Hartog C, Natanson C, Loeffler M, Reinhart K (2008) Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 358:125–139. doi: 10.1056/NEJMoa070716 PubMedCrossRefGoogle Scholar
  7. 7.
    Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, Glass P, Lipman J, Liu B, McArthur C, McGuinness S, Rajbhandari D, Taylor CB, Webb SAR (2012) Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med 367:1901–1911. doi: 10.1056/NEJMoa1209759 PubMedCrossRefGoogle Scholar
  8. 8.
    Gattas DJ, Dan A, Myburgh J, Billot L, Lo S, Finfer S (2013) Fluid resuscitation with 6% hydroxyethyl starch (130/0.4 and 130/0.42) in acutely ill patients: systematic review of effects on mortality and treatment with renal replacement therapy. Intensive Care Med 39:558–568. doi: 10.1007/s00134-013-2840-0 PubMedCrossRefGoogle Scholar
  9. 9.
    Zarychanski R, Abou-Setta AM, Turgeon AF, Houston BL, McIntyre L, Marshall JC, Fergusson DA (2013) Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis. JAMA 309:678–688. doi: 10.1001/jama.2013.430 PubMedCrossRefGoogle Scholar
  10. 10.
    Perel P, Roberts I, Ker K (2013) Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev 2: CD000567. doi: 10.1002/14651858.CD000567.pub6
  11. 11.
    The European Medicines Agency’s Pharmacovigilance Risk Assessment Committee. PRAC recommends suspending marketing authorisations for infusion solutions containing hydroxyethyl-starch (2013). Accessed 14 Jun 2013
  12. 12.
    US Food and Drug Administration (2013) FDA safety communication: Boxed warning on increased mortality and severe renal injury, and additional warning on risk of bleeding, for use of hydroxyethyl starch solutions in some settings. Accessed 24 Jun 2013
  13. 13.
    Perner A, Haase N, Wetterslev J, Aneman A, Tenhunen J, Guttormsen AB, Klemenzson G, Pott F, Bødker KD, Bådstøløkken PM, Bendtsen A, Søe-Jensen P, Tousi H, Bestle M, Pawlowicz M, Winding R, Bülow H–H, Kancir C, Steensen M, Nielsen J, Fogh B, Madsen KR, Larsen NH, Carlsson M, Wiis J, Petersen JA, Iversen S, Schøidt O, Leivdal S, Berezowicz P, Pettilä V, Ruokonen E, Klepstad P, Karlsson S, Kaukonen M, Rutanen J, Karason S, Kjældgaard AL, Holst LB, Wernerman J (2011) Comparing the effect of hydroxyethyl starch 130/0.4 with balanced crystalloid solution on mortality and kidney failure in patients with severe sepsis (6S–Scandinavian Starch for Severe Sepsis/Septic Shock trial): study protocol, design and rationale for a double-blinded, randomised clinical trial. Trials 12:24. doi: 10.1186/1745-6215-12-24 PubMedCrossRefGoogle Scholar
  14. 14.
    Kahan BC, Morris TP (2012) Reporting and analysis of trials using stratified randomisation in leading medical journals: review and reanalysis. BMJ 345:e5840PubMedCrossRefGoogle Scholar
  15. 15.
    Le Gall JR, Lemeshow S, Saulnier F (1993) A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. JAMA 270:2957–63Google Scholar
  16. 16.
    Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, Reinhart CK, Suter PM, Thijs LG (1996) The SOFA (sepsis-related organ failure assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 22:707–710PubMedCrossRefGoogle Scholar
  17. 17.
    Gabriel SE, Normand S-LT (2012) Getting the methods right–the foundation of patient-centered outcomes research. N Engl J Med 367:787–790. doi: 10.1056/NEJMp1207437 PubMedCrossRefGoogle Scholar
  18. 18.
    Schafer JL (1999) Multiple imputation: a primer. Stat Methods Med Res 8:3–15PubMedCrossRefGoogle Scholar
  19. 19.
    Kozek-Langenecker SA, Jungheinrich C, Sauermann W, Van der Linden P (2008) The effects of hydroxyethyl starch 130/0.4 (6%) on blood loss and use of blood products in major surgery: a pooled analysis of randomized clinical trials. Anesth Analg 107:382–390. doi: 10.1213/ane.0b013e31817e6eac PubMedCrossRefGoogle Scholar
  20. 20.
    Westphal M, James MFM, Kozek-Langenecker S, Stocker R, Guidet B, Van Aken H (2009) Hydroxyethyl starches: different products–different effects. Anesthesiology 111:187–202. doi: 10.1097/ALN.0b013e3181a7ec82 PubMedCrossRefGoogle Scholar
  21. 21.
    Godier A, Durand M, Smadja D, Jeandel T, Emmerich J, Samama CM (2010) Maize- or potato-derived hydroxyethyl starches: is there any thromboelastometric difference? Acta Anaesthesiol Scand 54:1241–1247. doi: 10.1111/j.1399-6576.2010.02306.x PubMedCrossRefGoogle Scholar
  22. 22.
    Matsota P, Politou M, Kalimeris K, Apostolaki S, Merkouri E, Gialeraki A, Travlou A, Kostopanagiotou G (2010) Do different substitution patterns or plant origin in hydroxyethyl starches affect blood coagulation in vitro? Blood Coagul Fibrinolysis 21:448–451. doi: 10.1097/MBC.0b013e328338db67 PubMedCrossRefGoogle Scholar
  23. 23.
    Guidet B, Martinet O, Boulain T, Philippart F, Poussel JF, Maizel J, Forceville X, Feissel M, Hasselmann M, Heininger A, Van Aken H (2012) Assessment of hemodynamic efficacy and safety fluid replacement in patients with severe sepsis: the CRYSTMAS study. Crit Care 16:R94. doi: 10.1186/11358 PubMedCrossRefGoogle Scholar
  24. 24.
    Haase N, Perner A, Hennings LI, Siegemund M, Lauridsen B, Wetterslev M, Wetterslev J (2013) Hydroxyethyl starch 130/0.38-0.45 versus crystalloid or albumin in patients with sepsis: systematic review with meta-analysis and trial sequential analysis. BMJ 346:f839PubMedCrossRefGoogle Scholar
  25. 25.
    Stanworth SJ, Morris TP, Gaarder C, Goslings JC, Maegele M, Cohen MJ, König TC, Davenport RA, Pittet J-F, Johansson PI, Allard S, Johnson T, Brohi K (2010) Reappraising the concept of massive transfusion in trauma. Crit Care 14:R239. doi: 10.1186/cc9394 PubMedCrossRefGoogle Scholar
  26. 26.
    Shaw AD, Kellum JA (2013) The risk of AKI in patients treated with intravenous solutions containing hydroxyethyl starch. Clin J Am Soc Nephrol 8:497–503. doi: 10.2215/CJN.10921012 PubMedCrossRefGoogle Scholar
  27. 27.
    Finfer S, Liu B, Chittock DR, Norton R, Myburgh JA, McArthur C, Mitchell I, Foster D, Dhingra V, Henderson WR, Ronco JJ, Bellomo R, Cook D, McDonald E, Dodek P, Hébert PC, Heyland DK, Robinson BG (2012) Hypoglycemia and risk of death in critically ill patients. N Engl J Med 367:1108–1118. doi: 10.1056/NEJMoa1204942 PubMedCrossRefGoogle Scholar
  28. 28.
    Hébert PC, Wells G, Blajchman MA, Marshall J, Martin C, Pagliarello G, Tweeddale M, Schweitzer I, Yetisir E, Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group (1999) A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. N Engl J Med 340:409–417. doi: 10.1056/NEJM199902113400601 PubMedCrossRefGoogle Scholar
  29. 29.
    Lieberthal W, Fuhro R, Alam H, Rhee P, Szebeni J, Hechtman HB, Favuzza J, Veech RL, Valeri CR (2002) Comparison of the effects of a 50% exchange-transfusion with albumin, hetastarch, and modified hemoglobin solutions. Shock 17:61–69PubMedCrossRefGoogle Scholar
  30. 30.
    Schick MA, Isbary JT, Stueber T, Brugger J, Stumpner J, Schlegel N, Roewer N, Eichelbroenner O, Wunder C (2012) Effects of crystalloids and colloids on liver and intestine microcirculation and function in cecal ligation and puncture induced septic rodents. BMC Gastroenterol 12:179. doi: 10.1186/1471-230X-12-179 PubMedCrossRefGoogle Scholar
  31. 31.
    Abraham E, Singer M (2007) Mechanisms of sepsis-induced organ dysfunction. Crit Care Med 35:2408–2416PubMedCrossRefGoogle Scholar
  32. 32.
    Von Heymann C, Sander M, Spies CD (2012) Protocols, physiology, and trials of hydroxyethyl starch. N Engl J Med 367:1265–1266. doi: 10.1056/NEJMc1209905#SA2 author reply 1267CrossRefGoogle Scholar
  33. 33.
    Wise R, Fourie C, Richards GA (2012) Protocols, physiology, and trials of hydroxyethyl starch. N Engl J Med 367:1266–1267. doi: 10.1056/NEJMc1209905#SA4 author reply 1267PubMedGoogle Scholar
  34. 34.
    Magder S (2012) Protocols, physiology, and trials of hydroxyethyl starch. N Engl J Med 367:1265. doi: 10.1056/NEJMc1209905#SA1 author reply 1267PubMedCrossRefGoogle Scholar
  35. 35.
    Chappell D, Jacob M (2012) Protocols, physiology, and trials of hydroxyethyl starch. N Engl J Med 367:1266. doi: 10.1056/NEJMc1209905#SA3 author reply 1267PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2013

Authors and Affiliations

  • Nicolai Haase
    • 1
    Email author
  • Jørn Wetterslev
    • 2
  • Per Winkel
    • 2
  • Anders Perner
    • 1
  1. 1.Department of Intensive CareCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
  2. 2.Copenhagen Trial Unit, Centre for Clinical Intervention ResearchCopenhagen University Hospital, RigshospitaletCopenhagenDenmark

Personalised recommendations