Intensive Care Medicine

, Volume 39, Issue 11, pp 2003–2010 | Cite as

Potentially harmful effects of inspiratory synchronization during pressure preset ventilation

  • J. C. M. Richard
  • A. Lyazidi
  • E. Akoumianaki
  • S. Mortaza
  • R. L. Cordioli
  • J. C. Lefebvre
  • N. Rey
  • L. Piquilloud
  • G. F. Sferrazza-Papa
  • A. Mercat
  • L. Brochard
Original

Abstract

Purpose

Pressure preset ventilation (PPV) modes with set inspiratory time can be classified according to their ability to synchronize pressure delivery with patient’s inspiratory efforts (i-synchronization). Non-i-synchronized (like airway pressure release ventilation, APRV), partially i-synchronized (like biphasic airway pressure), and fully i-synchronized modes (like assist-pressure control) can be distinguished. Under identical ventilatory settings across PPV modes, the degree of i-synchronization may affect tidal volume (V T), transpulmonary pressure (P TP), and their variability. We performed bench and clinical studies.

Methods

In the bench study, all the PPV modes of five ventilators were tested with an active lung simulator. Spontaneous efforts of −10 cmH2O at rates of 20 and 30 breaths/min were simulated. Ventilator settings were high pressure 30 cmH2O, positive end-expiratory pressure (PEEP) 15 cmH2O, frequency 15 breaths/min, and inspiratory to expiratory ratios (I:E) 1:3 and 3:1. In the clinical studies, data from eight intubated patients suffering from acute respiratory distress syndrome (ARDS) and ventilated with APRV were compared to the bench tests. In four additional ARDS patients, each of the PPV modes was compared.

Results

As the degree of i-synchronization among the different PPV modes increased, mean V T and P TP swings markedly increased while breathing variability decreased. This was consistent with clinical comparison in four ARDS patients. Observational results in eight ARDS patients show low V T and a high variability with APRV.

Conclusion

Despite identical ventilator settings, the different PPV modes lead to substantial differences in V T, P TP, and breathing variability in the presence spontaneous efforts. Clinicians should be aware of the possible harmful effects of i-synchronization especially when high V T is undesirable.

Keywords

Pressure preset ventilation ARDS APRV BIPAP 

Abbreviations

APRV

Airway pressure release ventilation

ARDS

Acute respiratory distress syndrome

BIPAP

Biphasic positive airway pressure

CV

Coefficient of variation

I:E

Inspiratory to expiratory ratio

ICU

Intensive care unit

PAC

Pressure assist control

PEEP

Positive end-expiratory pressure

PMUS

Muscular pressure

PPV

Pressure preset ventilation

PS

Pressure support

PTP

Transpulmonary pressure

RRSPONT

Spontaneous respiratory rate

SD

Standard deviation

VT

Tidal volume

VMSPONT

Minute ventilation attributed to spontaneous breathing activity

VMTOT

Total minute ventilation

Notes

Acknowledgments

The authors are grateful to Prof. Jordi Mancebo for the critical appraisal of the manuscript. This study was supported by grants from the Société de Réanimation de Langue Française (SRLF) for Nathalie Rey and the Coordenação de Aperfeioçoamento de Pessoal de Nível Superior (CAPES)-Ministry of Education, Brazil (Bolsita da CAPES, Proc. no. BEX-18231-12-8) for Ricardo Cordioli.

Conflicts of interest

We hereby declare that we have no conflict of interest directly related to the manuscript. LB’s research laboratory received grants from several ventilator companies for specific research projects (Maquet, NAVA; Covidien, PAV; Drager, SmartCare; Philips Respironics, NIV; General Electric, FRC).

Supplementary material

134_2013_3032_MOESM1_ESM.docx (535 kb)
Supplementary material 1 (DOCX 534 kb)

References

  1. 1.
    The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308CrossRefGoogle Scholar
  2. 2.
    Amato MB, Barbas CS, Medeiros DM, Magaldi RB et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354PubMedCrossRefGoogle Scholar
  3. 3.
    Slutsky AS, Tremblay LN (1998) Multiple system organ failure. Is mechanical ventilation a contributing factor? Am J Respir Crit Care Med 157:1721–1725PubMedCrossRefGoogle Scholar
  4. 4.
    Gattinoni L, Protti A, Caironi P, Carlesso E (2010) Ventilator-induced lung injury: the anatomical and physiological framework. Crit Care Med 38:S539–S548PubMedCrossRefGoogle Scholar
  5. 5.
    Papazian L, Forel JM, Gacouin A, Penot-Ragon C et al (2010) Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 363:1107–1116PubMedCrossRefGoogle Scholar
  6. 6.
    Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J (1999) Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 159:1241–1248PubMedCrossRefGoogle Scholar
  7. 7.
    Putensen C, Zech S, Wrigge H, Zinserling J, Stuber F, Von Spiegel T, Mutz N (2001) Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 164:43–49PubMedCrossRefGoogle Scholar
  8. 8.
    Marini JJ (2012) Spontaneously regulated vs. controlled ventilation of acute lung injury/acute respiratory distress syndrome. Curr Opin Crit Care 17:24–29CrossRefGoogle Scholar
  9. 9.
    Neumann P, Wrigge H, Zinserling J, Hinz J et al (2005) Spontaneous breathing affects the spatial ventilation and perfusion distribution during mechanical ventilatory support. Crit Care Med 33:1090–1095PubMedCrossRefGoogle Scholar
  10. 10.
    Wrigge H, Zinserling J, Neumann P, Muders T, Magnusson A, Putensen C, Hedenstierna G (2005) Spontaneous breathing with airway pressure release ventilation favors ventilation in dependent lung regions and counters cyclic alveolar collapse in oleic-acid-induced lung injury: a randomized controlled computed tomography trial. Crit Care 9:R780–R789PubMedCrossRefGoogle Scholar
  11. 11.
    Rose L, Hawkins M (2008) Airway pressure release ventilation and biphasic positive airway pressure: a systematic review of definitional criteria. Intensive Care Med 34:1766–1773PubMedCrossRefGoogle Scholar
  12. 12.
    Sasidhar M, Chatburn RL (2012) Tidal volume variability during airway pressure release ventilation: case summary and theoretical analysis. Respir Care 57:1325–1333PubMedCrossRefGoogle Scholar
  13. 13.
    Akoumianaki E, Rey N, Lyazidi A, Perez-Martinez N, Brochard L, Richard JCM (2012) Impact of airway pressure release ventilation (APRV) and biphasic intermittent positive airway pressure (BIPAP) modes on the lung protection in breathing lung model. Intensive Care Med 38(Suppl 1):S142Google Scholar
  14. 14.
    Sessler CN, Gosnell MS, Grap MJ, Brophy GM et al (2002) The Richmond Agitation-Sedation Scale: validity and reliability in adult intensive care unit patients. Am J Respir Crit Care Med 166:1338–1344PubMedCrossRefGoogle Scholar
  15. 15.
    Daoud EG, Farag HL, Chatburn RL (2012) Airway pressure release ventilation: what do we know? Respir Care 57:282–292PubMedGoogle Scholar
  16. 16.
    Modrykamien A, Chatburn RL, Ashton RW (2011) Airway pressure release ventilation: an alternative mode of mechanical ventilation in acute respiratory distress syndrome. Cleve Clin J Med 78:101–110PubMedCrossRefGoogle Scholar
  17. 17.
    Chiumello D, Carlesso E, Cadringher P, Caironi P et al (2008) Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 178:346–355PubMedCrossRefGoogle Scholar
  18. 18.
    González M, Arroliga AC, Frutos-Vivar F, Raymondos K et al (2010) Airway pressure release ventilation versus assist-control ventilation: a comparative propensity score and international cohort study. Intensive Care Med 36:817–827PubMedCrossRefGoogle Scholar
  19. 19.
    Maxwell RA, Green JM, Waldrop J, Dart BW et al (2010) A randomized prospective trial of airway pressure release ventilation and low tidal volume ventilation in adult trauma patients with acute respiratory failure. J Trauma 69:501–510 discussion 511PubMedCrossRefGoogle Scholar
  20. 20.
    Richard JC, Maggiore SM, Jonson B, Mancebo J, Lemaire F, Brochard L (2001) Influence of tidal volume on alveolar recruitment. Respective role of PEEP and a recruitment maneuver. Am J Respir Crit Care Med 163:1609–1613PubMedCrossRefGoogle Scholar
  21. 21.
    Cereda M, Foti G, Musch G, Sparacino ME, Pesenti A (1996) Positive end-expiratory pressure prevents the loss of respiratory compliance during low tidal volume ventilation in acute lung injury patients. Chest 109:480–485PubMedCrossRefGoogle Scholar
  22. 22.
    Pelosi P, Cadringher P, Bottino N, Panigada M et al (1999) Sigh in acute respiratory distress syndrome. Am J Respir Crit Care Med 159:872–880PubMedCrossRefGoogle Scholar
  23. 23.
    Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149:1327–1334PubMedCrossRefGoogle Scholar
  24. 24.
    Richard JC, Brochard L, Vandelet P, Breton L et al (2003) Respective effects of end-expiratory and end-inspiratory pressures on alveolar recruitment in acute lung injury. Crit Care Med 31:89–92PubMedCrossRefGoogle Scholar
  25. 25.
    Grasso S, Mascia L, Del Turco M, Malacarne P et al (2002) Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilatory strategy. Anesthesiology 96:795–802PubMedCrossRefGoogle Scholar
  26. 26.
    Suki B, Alencar AM, Sujeer MK, Lutchen KR et al (1998) Life-support system benefits from noise. Nature 393:127–128PubMedCrossRefGoogle Scholar
  27. 27.
    Ma B, Suki B, Bates JH (2011) Effects of recruitment/derecruitment dynamics on the efficacy of variable ventilation. J Appl Physiol 110:1319–1326PubMedCrossRefGoogle Scholar
  28. 28.
    Thille AW, Lyazidi A, Richard JC, Galia F, Brochard L (2009) A bench study of intensive-care-unit ventilators: new versus old and turbine-based versus compressed gas-based ventilators. Intensive Care Med 35:1368–1376PubMedCrossRefGoogle Scholar
  29. 29.
    Lyazidi A, Thille AW, Carteaux G, Galia F, Brochard L, Richard JC (2010) Bench test evaluation of volume delivered by modern ICU ventilators during volume-controlled ventilation. Intensive Care Med 36:2074–2080PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2013

Authors and Affiliations

  • J. C. M. Richard
    • 1
    • 2
    • 5
  • A. Lyazidi
    • 1
    • 2
  • E. Akoumianaki
    • 1
  • S. Mortaza
    • 3
  • R. L. Cordioli
    • 1
    • 4
  • J. C. Lefebvre
    • 1
  • N. Rey
    • 1
  • L. Piquilloud
    • 3
  • G. F. Sferrazza-Papa
    • 1
  • A. Mercat
    • 3
  • L. Brochard
    • 1
    • 2
    • 6
  1. 1.Intensive Care UnitUniversity Hospital of GenevaGenève 14Switzerland
  2. 2.School of MedicineUniversity of GenevaGenevaSwitzerland
  3. 3.Intensive Care UnitUniversity Hospital of AngersAngersFrance
  4. 4.Hospital Israelita Albert EinsteinSão PauloBrazil
  5. 5.UPRESS EA 38 30Hôpital Universitaire de RouenRouenFrance
  6. 6.INSERM Unit 955, Team 13University Paris-EstCréteilFrance

Personalised recommendations