Intensive Care Medicine

, Volume 39, Issue 8, pp 1368–1376 | Cite as

Dyspnea and surface inspiratory electromyograms in mechanically ventilated patients

  • Matthieu SchmidtEmail author
  • Félix Kindler
  • Stewart B. Gottfried
  • Mathieu Raux
  • Francois Hug
  • Thomas Similowski
  • Alexandre Demoule



Pressure support ventilation (PSV) must be tailored to the load capacity balance of the respiratory system. While "over assistance" generated hyperinflation and ineffective efforts, "under assistance" increased respiratory drive and causes dyspnea. Surface electromyograms (sEMGs) of extradiaphragmatic inspiratory muscles were responsive to respiratory loading/unloading.


To determine if sEMGs of extradiaphragmatic inspiratory muscles vary with PSV settings and relate to the degree of discomfort and the intensity of dyspnea in acutely ill patients.


Pathophysiological study, prospective inclusions of 12 intubated adult patients.


Two PSV levels (high and low) and two expiratory trigger (ET) levels (high and low).


Surface electromyograms of the scalene, parasternal, and Alae Nasi muscles (peak, EMGmax; area under the curve, EMGAUC); dyspnea visual analogue scale (VAS); prevalence of ineffective triggering efforts.

Main results

For the three recorded muscles, EMGmax and EMGAUC were significantly greater with low PS than high PS. The influence of ET was less important. A strong correlation was found between dyspnea and EMGmax. A significant inverse correlation was found between the prevalence of ineffective efforts and both dyspnea-VAS and EMGmin.


Surface electromyograms of extradiaphragmatic inspiratory muscles provides a simple, reliable and non-invasive indicator of respiratory muscle loading/unloading in mechanically ventilated patients. Because this EMG activity is strongly correlated to the intensity of dyspnea, it could be used as a surrogate of respiratory sensations in mechanically ventilated patients, and might, therefore, provide a monitoring tool in patients in whom detection and quantification of dyspnea is complex if not impossible.


Mechanical ventilation Patient–ventilator interaction Electromyogram Positive pressure support Inspiratory muscles 



We thank Mr. Paul E. Robinson for reviewing the manuscript. Matthieu Schmidt was supported by ANTADIR (Association Nationale pour le Traitement à Domicile, l’Innovation et la Recherche) and the Fonds d’etude et de recherche du corps medicale des Hôpitaux de Paris, France. Alexandre Demoule was supported by CARDIF (Centre d’Assistance Respiratoire à Domicile d’Ile-de-France), the Société de Réanimation Langue Française and the Société de Pneumologie de Langue Française, Paris, France. François Hug was supported by CARDIF (Centre d’Assistance Respiratoire à Domicile d’Ile-de-France), Paris, France. The study was funded by Association pour le Développement et l’Organisation de la Recherche en Pneumologie et sur le Sommeil (ADOREPS), Paris, France, a by the grant “EEG-PVI “ (ANR-11-EMMA-030-01) of Agence Nationale de la Recherche, Paris, France

Conflicts of interest

In 2009 and 2010, the Association pour le Développement et l’Organisation de la Recherche en Pneumologie et sur le Sommeil (ADOREPS) received an unrestricted research grant from Maquet France SA, Orléans, France, to support pathophysiological research studies on the “neurally adjusted ventilatory assist” (NAVA) mode.

Supplementary material

134_2013_2910_MOESM1_ESM.doc (149 kb)
Supplementary material 1 (DOC 149 kb)


  1. 1.
    Schmidt M, Demoule A, Polito A, Porchet Rl, Aboab J, Siami S, Morelot-Panzini C, Similowski T, Sharshar T (2011) Dyspnea in mechanically ventilated critically ill patients. Crit Care Med 39:2059–2065PubMedCrossRefGoogle Scholar
  2. 2.
    Vitacca M, Bianchi L, Zanotti E, Vianello A, Barbano L, Porta R, Clini E (2004) Assessment of physiologic variables and subjective comfort under different levels of pressure support ventilation. Chest 126:851–859PubMedCrossRefGoogle Scholar
  3. 3.
    Thille AW, Cabello B, Galia F, Lyazidi A, Brochard L (2008) Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Med 34:1477–1486PubMedCrossRefGoogle Scholar
  4. 4.
    Thille AW, Rodriguez P, Cabello B, Lellouche Fo, Brochard L (2006) Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med 32:1515–1522PubMedCrossRefGoogle Scholar
  5. 5.
    Schmidt M, Chiti L, Hug F, Demoule A, Similowski T (2011) Surface electromyogram of inspiratory muscles: a possible routine monitoring tool in the intensive care unit. Br J Anaesth 106:913–914PubMedCrossRefGoogle Scholar
  6. 6.
    Ramsay MA, Savege TM, Simpson BR, Goodwin R (1974) Controlled sedation with alphaxalone–alphadolone. Br Med J 2:656–659PubMedCrossRefGoogle Scholar
  7. 7.
    De Jonghe B, Cook D, Griffith L, Appere-de-Vecchi C, Guyatt G, Theron V, Vagnerre A, Outin H (2003) Adaptation to the Intensive Care Environment (ATICE): development and validation of a new sedation assessment instrument. Crit Care Med 31:2344–2354PubMedCrossRefGoogle Scholar
  8. 8.
    Lush MT, Janson-Bjerklie S, Carrieri VK, Lovejoy N (1988) Dyspnea in the ventilator-assisted patient. J Crit Care 17:528–535Google Scholar
  9. 9.
    Bouley GH, Froman R, Shah H (1992) The experience of dyspnea during weaning. J Crit Care 21:471–476Google Scholar
  10. 10.
    Powers J, Bennett SJ (1999) Measurement of dyspnea in patients treated with mechanical ventilation. Am J Crit Care 8:254–261PubMedGoogle Scholar
  11. 11.
    Hug F, Raux M, Prella M, Morelot-Panzini C, Straus C, Similowski T (2006) Optimized analysis of surface electromyograms of the scalenes during quiet breathing in humans. Respir Physiol Neurobiol 150:75–81PubMedCrossRefGoogle Scholar
  12. 12.
    Georgopoulos D, Prinianakis G, Kondili E (2006) Bedside waveforms interpretation as a tool to identify patient-ventilator asynchronies. Intensive Care Med 32:34–47PubMedCrossRefGoogle Scholar
  13. 13.
    Poon CS (1988) Analysis of linear and mildly nonlinear relationships using pooled subject data. J Appl Physiol (Bethesda, Md: 1985) 64:854–859Google Scholar
  14. 14.
    Brochard L, Harf A, Lorino H, Lemaire F (1989) Inspiratory pressure support prevents diaphragmatic fatigue during weaning from mechanical ventilation. Am Rev Respir Dis 139:513–521PubMedCrossRefGoogle Scholar
  15. 15.
    Chao DC, Scheinhorn DJ, Stearn-Hassenpflug M (1997) Patient-ventilator trigger asynchrony in prolonged mechanical ventilation. Chest 112:1592PubMedCrossRefGoogle Scholar
  16. 16.
    Parthasarathy S, Jubran A, Laghi F, Tobin MJ (2007) Sternomastoid, rib cage, and expiratory muscle activity during weaning failure. J Appl Physiol (Bethesda, Md: 1985) 103:140–147CrossRefGoogle Scholar
  17. 17.
    Murphy PB, Kumar A, Reilly C, Jolley C, Walterspacher S, Fedele F, Hopkinson NS, Man WD-C, Polkey MI, Moxham J, Hart N (2011) Neural respiratory drive as a physiological biomarker to monitor change during acute exacerbations of COPD. Thorax 66:602–608PubMedCrossRefGoogle Scholar
  18. 18.
    Strohl KP, Hensley MJ, Hallett M, Saunders NA, Ingram RH Jr (1980) Activation of upper airway muscles before onset of inspiration in normal humans. J Appl Physiol 49:638–642PubMedGoogle Scholar
  19. 19.
    Chiti L, Biondi G, Morelot-Panzini C, Raux M, Similowski T, Hug FO (2008) Scalene muscle activity during progressive inspiratory loading under pressure support ventilation in normal humans. Respir Physiol Neurobiol 164:441–448PubMedCrossRefGoogle Scholar
  20. 20.
    Zakynthinos SG, Vassilakopoulos T, Roussos C (1995) The load of inspiratory muscles in patients needing mechanical ventilation. Am J Respir Crit Care Med 152:1248–1255PubMedCrossRefGoogle Scholar
  21. 21.
    Leung P, Jubran A, Tobin MJ (1997) Comparison of assisted ventilator modes on triggering, patient effort, and dyspnea. Am J Respir Crit Care Med 155:1940–1948PubMedCrossRefGoogle Scholar
  22. 22.
    Morelot-Panzini C, Demoule A, Straus C, Zelter M, Derenne J-P, Willer J-C, Similowski T (2007) Dyspnea as a noxious sensation: inspiratory threshold loading may trigger diffuse noxious inhibitory controls in humans. J Neurophysiol 97:1396–1404PubMedCrossRefGoogle Scholar
  23. 23.
    Lellouche F, Lipes J (2012) Prophylactic protective ventilation: lower tidal volumes for all critically ill patients? Intensive Care Med 39:6–15PubMedCrossRefGoogle Scholar
  24. 24.
    Serpa Neto A, Cardoso SO, Manetta JA, Pereira VG, Esposito DC, Pasqualucci Mde O, Damasceno MC, Schultz MJ (2012) Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA 308:1651–1659PubMedCrossRefGoogle Scholar
  25. 25.
    Aliverti A, Cala SJ, Duranti R, Ferrigno G, Kenyon CM, Pedotti A, Scano G, Sliwinski P, Macklem PT, Yan S (1997) Human respiratory muscle actions and control during exercise. J Appl Physiol (Bethesda, Md: 1985) 83:1256–1269Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2013

Authors and Affiliations

  • Matthieu Schmidt
    • 1
    • 2
    Email author
  • Félix Kindler
    • 1
    • 3
  • Stewart B. Gottfried
    • 1
    • 4
  • Mathieu Raux
    • 1
    • 3
  • Francois Hug
    • 1
    • 5
  • Thomas Similowski
    • 1
    • 2
  • Alexandre Demoule
    • 1
    • 2
    • 6
  1. 1.Université Paris 6, Pierre Et Marie Curie, ER10ParisFrance
  2. 2.Assistance Publique, Hôpitaux de Paris, Service de Pneumologie et Réanimation MédicaleGroupe Hospitalier Pitié-SalpêtrièreParis Cedex 13France
  3. 3.Assistance Publique, Hôpitaux de Paris Département d’anesthésie et de RéanimationGroupe Hospitalier Pitié-SalpêtrièreParisFrance
  4. 4.Divisions of Respiratory and Critical Care Medicine, Department of MedicineMcGill University Health Centre, Meakins-Christie Laboratories, McGill UniversityMontrealCanada
  5. 5.Université de Nantes, Nantes Atlantique UniversitésNantesFrance
  6. 6.UMRS 974, Institut National de la Santé et de la Recherche MédicaleParisFrance

Personalised recommendations