Advertisement

Intensive Care Medicine

, Volume 39, Issue 6, pp 1121–1127 | Cite as

Effect of different seated positions on lung volume and oxygenation in acute respiratory distress syndrome

  • J. Dellamonica
  • N. Lerolle
  • C. Sargentini
  • S. Hubert
  • G. Beduneau
  • F. Di Marco
  • A. Mercat
  • J. L. Diehl
  • J. C. M. Richard
  • G. Bernardin
  • L. Brochard
Physiological and Technical Notes

Abstract

Rationale

Lung volume available for ventilation is markedly decreased during acute respiratory distress syndrome. Body positioning may contribute to increase lung volume and partial verticalization is simple to perform. This study evaluated whether verticalization had parallel effects on oxygenation and end expiratory lung volume (EELV).

Methods

Prospective multicenter study in 40 mechanically ventilated patients with ALI/ARDS in five university hospital MICUs. We evaluated four 45-min successive trunk position epochs (supine slightly elevated at 15°; semi recumbent with trunk elevated at 45°; seated with trunk elevated at 60° and legs down at 45°; back to supine). Arterial blood gases, EELV measured using the nitrogen washin/washout, and static compliance were measured. Responders were defined by a PaO2/FiO2 increase >20 % between supine and seated position. Results are median [25th–75th percentiles].

Results

With median PEEP = 10 cmH2O, verticalization increased lung volume but only responders (13 patients, 32 %) had a significant increase in EELV/PBW (predicted body weight) compared to baseline. This increase persisted at least partially when patients were positioned back to supine. Responders had a lower EELV/PBW supine [14 mL/kg (13–15) vs. 18 mL/kg (15–27) (p = 0.005)] and a lower compliance [30 mL/cmH2O (22–38) vs. 42 (30–46) (p = 0.01)] than non-responders. Strain decreased with verticalization for responders. EELV/PBW increase and PaO2/FiO2 increase were not correlated.

Discussion

Verticalization is easily achieved and improves oxygenation in approximately 32 % of the patients together with an increase in EELV. Nonetheless, effect of verticalization on EELV/PBW is not predictable by PaO2/FiO2 increase, its monitoring may be helpful for strain optimization.

Keywords

Nitrogen washout/washin End expiratory lung volume Functional residual capacity Acute respiratory distress syndrome Mechanical ventilation Positioning Recruitment Gas exchange 

Notes

Acknowledgments

General Electric provided the “Engström” ventilators for the study and a research grant, but had no access to the data, the analysis and the interpretation. Hill-Rom provided the “TotalCare"beds for the study, but had no access to the data, the analysis and the interpretation.

Supplementary material

134_2013_2827_MOESM1_ESM.docx (81 kb)
Supplementary material 1 (DOCX 81 kb)

References

  1. 1.
    Chiumello D, Carlesso E, Cadringher P, Caironi P, Valenza F, Polli F, Tallarini F, Cozzi P, Cressoni M, Colombo A, Marini JJ, Gattinoni L (2008) Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 178:346–355PubMedCrossRefGoogle Scholar
  2. 2.
    Dellamonica J, Lerolle N, Sargentini C, Beduneau G, Di Marco F, Mercat A, Richard JC, Diehl JL, Mancebo J, Rouby JJ, Lu Q, Bernardin G, Brochard L (2011) PEEP-induced changes in lung volume in acute respiratory distress syndrome. Two methods to estimate alveolar recruitment. Intensive Care Med 37:1595–1604PubMedCrossRefGoogle Scholar
  3. 3.
    Brochard L, Roudot-Thoraval F, Roupie E, Delclaux C, Chastre J, Fernandez-Mondejar E, Clementi E, Mancebo J, Factor P, Matamis D, Ranieri M, Blanch L, Rodi G, Mentec H, Dreyfuss D, Ferrer M, Brun-Buisson C, Tobin M, Lemaire F (1998) Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The multicenter trail group on tidal volume reduction in ARDS. Am J Respir Crit Care Med 158:1831–1838PubMedCrossRefGoogle Scholar
  4. 4.
    Mancebo J, Fernandez R, Blanch L, Rialp G, Gordo F, Ferrer M, Rodriguez F, Garro P, Ricart P, Vallverdu I, Gich I, Castano J, Saura P, Dominguez G, Bonet A, Albert RK (2006) A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med 173:1233–1239PubMedCrossRefGoogle Scholar
  5. 5.
    Richard JC, Maggiore SM, Mancebo J, Lemaire F, Jonson B, Brochard L (2006) Effects of vertical positioning on gas exchange and lung volumes in acute respiratory distress syndrome. Intensive Care Med 32:1623–1626PubMedCrossRefGoogle Scholar
  6. 6.
    Malbouisson LM, Busch CJ, Puybasset L, Lu Q, Cluzel P, Rouby JJ (2000) Role of the heart in the loss of aeration characterizing lower lobes in acute respiratory distress syndrome. CT scan ARDS study group. Am J Respir Crit Care Med 161:2005–2012CrossRefGoogle Scholar
  7. 7.
    Malbouisson LM, Muller JC, Constantin JM, Lu Q, Puybasset L, Rouby JJ (2001) Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 163:1444–1450PubMedCrossRefGoogle Scholar
  8. 8.
    Rouby JJ, Constantin JM, De Roberto A, Girardi C, Zhang M, Lu Q (2004) Mechanical ventilation in patients with acute respiratory distress syndrome. Anesthesiology 101:228–234PubMedCrossRefGoogle Scholar
  9. 9.
    Girou E, Buu-Hoi A, Stephan F, Novara A, Gutmann L, Safar M, Fagon JY (2004) Airway colonisation in long-term mechanically ventilated patients. Effect of semi-recumbent position and continuous subglottic suctioning. Intensive Care Med 30:225–233PubMedCrossRefGoogle Scholar
  10. 10.
    Orozco-Levi M, Torres A, Ferrer M, Piera C, el-Ebiary M, de la Bellacasa JP, Rodriguez-Roisin R (1995) Semirecumbent position protects from pulmonary aspiration but not completely from gastroesophageal reflux in mechanically ventilated patients. Am J Respir Crit Care Med 152:1387–1390PubMedCrossRefGoogle Scholar
  11. 11.
    Bouadma L, Deslandes E, Lolom I, Le Corre B, Mourvillier B, Regnier B, Porcher R, Wolff M, Lucet JC (2010) Long-term impact of a multifaceted prevention program on ventilator-associated pneumonia in a medical intensive care unit. Clin Infect Dis 51:1115–1122PubMedCrossRefGoogle Scholar
  12. 12.
    Cressoni M, Caironi P, Polli F, Carlesso E, Chiumello D, Cadringher P, Quintel M, Ranieri VM, Bugedo G, Gattinoni L (2008) Anatomical and functional intrapulmonary shunt in acute respiratory distress syndrome. Crit Care Med 36:669–675PubMedCrossRefGoogle Scholar
  13. 13.
    Caironi P, Cressoni M, Chiumello D, Ranieri M, Quintel M, Russo SG, Cornejo R, Bugedo G, Carlesso E, Russo R, Caspani L, Gattinoni L (2010) Lung opening and closing during ventilation of acute respiratory distress syndrome. Am J Respir Crit Care Med 181:578–586PubMedCrossRefGoogle Scholar
  14. 14.
    Bikker IG, van Bommel J, Reis Miranda D, Bakker J, Gommers D (2008) End-expiratory lung volume during mechanical ventilation: a comparison with reference values and the effect of positive end-expiratory pressure in intensive care unit patients with different lung conditions. Crit Care 12:R145PubMedCrossRefGoogle Scholar
  15. 15.
    Dellamonica J, Lerolle N, Sargentini C, Beduneau G, Di Marco F, Mercat A, Richard JC, Diehl JL, Mancebo J, Rouby JJ, Lu Q, Bernardin G, Brochard L (2011) Accuracy and precision of end-expiratory lung-volume measurements by automated nitrogen washout/washin technique in patients with acute respiratory distress syndrome. Crit Care 15:R294PubMedCrossRefGoogle Scholar
  16. 16.
    Olegard C, Sondergaard S, Houltz E, Lundin S, Stenqvist O (2005) Estimation of functional residual capacity at the bedside using standard monitoring equipment: a modified nitrogen washout/washin technique requiring a small change of the inspired oxygen fraction. Anesth Analg 101:206–212 table of contentsPubMedCrossRefGoogle Scholar
  17. 17.
    Chiumello D, Cressoni M, Chierichetti M, Tallarini F, Botticelli M, Berto V, Mietto C, Gattinoni L (2008) Nitrogen washout/washin, helium dilution and computed tomography in the assessment of end expiratory lung volume. Crit Care 12:R150PubMedCrossRefGoogle Scholar
  18. 18.
    (2012) Acute respiratory distress syndrome. The Berlin definition. The ARDS definition task force. JAMA 307. doi: 10.1001/jama.2012.5669
  19. 19.
    Artigas A, Bernard GR, Carlet J, Dreyfuss D, Gattinoni L, Hudson L, Lamy M, Marini JJ, Matthay MA, Pinsky MR, Spragg R, Suter PM (1998) The american-european consensus conference on ARDS, part 2. Ventilatory, pharmacologic, supportive therapy, study design strategies and issues related to recovery and remodeling. Intensive Care Med 24:378–398PubMedCrossRefGoogle Scholar
  20. 20.
    Gonzalez-Lopez A, Garcia-Prieto E, Batalla-Solis E, Amado-Rodriguez L, Avello N, Blanch L, Albaiceta GM (2012) Lung strain and biological response in mechanically ventilated patients. Intensive Care Med 38:240–247PubMedCrossRefGoogle Scholar
  21. 21.
    McMullin JP, Cook DJ, Meade MO, Weaver BR, Letelier LM, Kahmamoui K, Higgins DA, Guyatt GH (2002) Clinical estimation of trunk position among mechanically ventilated patients. Intensive Care Med 28:304–309PubMedCrossRefGoogle Scholar
  22. 22.
    van Nieuwenhoven CA, Vandenbroucke-Grauls C, van Tiel FH, Joore HC, van Schijndel RJ, van der Tweel I, Ramsay G, Bonten MJ (2006) Feasibility and effects of the semi-recumbent position to prevent ventilator-associated pneumonia: a randomized study. Crit Care Med 34:396–402PubMedCrossRefGoogle Scholar
  23. 23.
    Deye N, Lellouche F, Maggiore SM, Taille S, Demoule A, L’Her E, Galia F, Harf A, Mancebo J, Brochard L (2013) The semi-seated position slightly reduces the effort to breathe during difficult weaning. Intensive Care Med 39:85–92PubMedCrossRefGoogle Scholar
  24. 24.
    Benedik PS, Baun MM, Keus L, Jimenez C, Morice R, Bidani A, Meininger JC (2009) Effects of body position on resting lung volume in overweight and mildly to moderately obese subjects. Respir Care 54:334–339PubMedGoogle Scholar
  25. 25.
    De Keulenaer BL, De Waele JJ, Powell B, Malbrain ML (2009) What is normal intra-abdominal pressure and how is it affected by positioning, body mass and positive end-expiratory pressure? Intensive Care Med 35:969–976PubMedCrossRefGoogle Scholar
  26. 26.
    Bittner E, Chendrasekhar A, Pillai S, Timberlake GA (1996) Changes in oxygenation and compliance as related to body position in acute lung injury. Am Surg 62:1038–1041PubMedGoogle Scholar
  27. 27.
    Sud S, Friedrich JO, Taccone P, Polli F, Adhikari NK, Latini R, Pesenti A, Guerin C, Mancebo J, Curley MA, Fernandez R, Chan MC, Beuret P, Voggenreiter G, Sud M, Tognoni G, Gattinoni L (2010) Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med 36:585–599PubMedCrossRefGoogle Scholar
  28. 28.
    Bellani G, Guerra L, Musch G, Zanella A, Patroniti N, Mauri T, Messa C, Pesenti A (2011) Lung regional metabolic activity and gas volume changes induced by tidal ventilation in patients with acute lung injury. Am J Respir Crit Care Med 183:1193–1199PubMedCrossRefGoogle Scholar
  29. 29.
    Protti A, Cressoni M, Santini A, Langer T, Mietto C, Febres D, Chierichetti M, Coppola S, Conte G, Gatti S, Leopardi O, Masson S, Lombardi L, Lazzerini M, Rampoldi E, Cadringher P, Gattinoni L (2011) Lung stress and strain during mechanical ventilation: any safe threshold? Am J Respir Crit Care Med 183:1354–1362PubMedCrossRefGoogle Scholar
  30. 30.
    Papazian L, Paladini MH, Bregeon F, Huiart L, Thirion X, Saux P, Jammes Y, Auffray JP (2001) Is a short trial of prone positioning sufficient to predict the improvement in oxygenation in patients with acute respiratory distress syndrome? Intensive Care Med 27:1044–1049CrossRefGoogle Scholar
  31. 31.
    Mekontso Dessap A, Boissier F, Leon R, Carreira S, Campo FR, Lemaire F, Brochard L (2010) Prevalence and prognosis of shunting across patent foramen ovale during acute respiratory distress syndrome. Crit Care Med 38:1786–1792PubMedCrossRefGoogle Scholar
  32. 32.
    Ibanez J, Raurich JM (1982) Normal values of functional residual capacity in the sitting and supine positions. Intensive Care Med 8:173–177PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2013

Authors and Affiliations

  • J. Dellamonica
    • 1
    • 2
    • 9
  • N. Lerolle
    • 3
    • 4
  • C. Sargentini
    • 4
  • S. Hubert
    • 2
  • G. Beduneau
    • 5
  • F. Di Marco
    • 6
  • A. Mercat
    • 4
  • J. L. Diehl
    • 3
  • J. C. M. Richard
    • 5
    • 7
    • 8
  • G. Bernardin
    • 2
  • L. Brochard
    • 1
    • 7
    • 8
    • 9
  1. 1.Réanimation Médicale, AP-HPCentre Hospitalier Albert Chenevier-Henri MondorCréteilFrance
  2. 2.Réanimation Médicale, CHU de Nice Hôpital L’ArchetUniversité de Nice Sophia AntipolisNiceFrance
  3. 3.Réanimation Médicale, AP-HP, Hôpital Européen Georges Pompidou and Faculté de MédecineUniversité Paris Descartes, Sorbonne Paris CitéParisFrance
  4. 4.Réanimation MédicaleCHU Angers and Université D’Angers PRES UNAMAngersFrance
  5. 5.Réanimation MédicaleCHU Charles NicolleRouenFrance
  6. 6.Pneumologia, Ospedale San PaoloUniversità degli Studi di MilanoMilanItaly
  7. 7.Soins IntensifsHôpitaux Universitaires de GenèveGenèveSwitzerland
  8. 8.University of GenevaGenevaSwitzerland
  9. 9.INSERM U-955, Equipe 13Paris EST UniversityCréteilFrance

Personalised recommendations