Advertisement

Intensive Care Medicine

, Volume 39, Issue 4, pp 583–592 | Cite as

A universal definition of ARDS: the PaO2/FiO2 ratio under a standard ventilatory setting—a prospective, multicenter validation study

  • Jesús Villar
  • Lina Pérez-Méndez
  • Jesús Blanco
  • José Manuel Añón
  • Lluís Blanch
  • Javier Belda
  • Antonio Santos-Bouza
  • Rosa Lidia Fernández
  • Robert M. Kacmarek
  • Spanish Initiative for Epidemiology, Stratification, and Therapies for ARDS (SIESTA) Network
Original

Abstract

Purpose

The PaO2/FiO2 is an integral part of the assessment of patients with acute respiratory distress syndrome (ARDS). The American-European Consensus Conference definition does not mandate any standardization procedure. We hypothesized that the use of PaO2/FiO2 calculated under a standard ventilatory setting within 24 h of ARDS diagnosis allows a more clinically relevant ARDS classification.

Methods

We studied 452 ARDS patients enrolled prospectively in two independent, multicenter cohorts treated with protective mechanical ventilation. At the time of ARDS diagnosis, patients had a PaO2/FiO2 ≤ 200. In the derivation cohort (n = 170), we measured PaO2/FiO2 with two levels of positive end-expiratory pressure (PEEP) (≥5 and ≥10 cmH2O) and two levels of FiO2 (≥0.5 and 1.0) at ARDS onset and 24 h later. Dependent upon PaO2 response, patients were reclassified into three groups: mild (PaO2/FiO2 > 200), moderate (PaO2/FiO2 101–200), and severe (PaO2/FiO2 ≤ 100) ARDS. The primary outcome measure was ICU mortality. The standard ventilatory setting that reached the highest significance difference in mortality among these categories was tested in a separate cohort (n = 282).

Results

The only standard ventilatory setting that identified the three PaO2/FiO2 risk categories in the derivation cohort was PEEP ≥ 10 cmH2O and FiO2 ≥ 0.5 at 24 h after ARDS onset (p = 0.0001). Using this ventilatory setting, patients in the validation cohort were reclassified as having mild ARDS (n = 47, mortality 17 %), moderate ARDS (n = 149, mortality 40.9 %), and severe ARDS (n = 86, mortality 58.1 %) (p = 0.00001).

Conclusions

Our method for assessing PaO2/FiO2 greatly improved risk stratification of ARDS and could be used for enrolling appropriate ARDS patients into therapeutic clinical trials.

Keywords

Acute respiratory distress syndrome Protective mechanical ventilation Standard ventilatory settings Lung injury severity Phenotype classification Definition Prognosis 

Notes

Acknowledgments

This work was supported by the Instituto de Salud Carlos III (PI 07/0113, PI 10/0393) and by the Asociación Científica Pulmón y Ventilación Mecánica. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflicts of interest

We have the following competing interests: RMK has received research grants from Hamilton, honorarium for lecturing from Maquet and Hamilton, and is a consultant for Newport, KCL, and Bayer. JV has received research grants from Maquet. The rest of the authors declared that no competing interests exist in relation to the content of this study and manuscript.

Supplementary material

134_2012_2803_MOESM1_ESM.doc (66 kb)
Supplementary material (DOC 66 kb)

References

  1. 1.
    Ashbaugh DG, Bigelow DB, Petty TL, Levine BE (1967) Acute respiratory distress in adults. Lancet 2:319–323PubMedCrossRefGoogle Scholar
  2. 2.
    Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342:1334–1349PubMedCrossRefGoogle Scholar
  3. 3.
    Villar J (2011) What is the acute respiratory distress syndrome? Respir Care 56:1539–1545PubMedCrossRefGoogle Scholar
  4. 4.
    Villar J, Pérez-Méndez L, Kacmarek RM (1999) Current definitions of acute lung injury and the acute respiratory distress syndrome do not reflect their true severity and outcome. Intensive Care Med 25:930–935PubMedCrossRefGoogle Scholar
  5. 5.
    Briel M, Meade M, Mercat A, Brower RG, Talmor D, Walter SD et al (2010) Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 303:865–873PubMedCrossRefGoogle Scholar
  6. 6.
    Sud S, Friedrich JO, Taccone P, Polli F, Adhikari NK, Latini R et al (2010) Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med 36:585–599PubMedCrossRefGoogle Scholar
  7. 7.
    Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L et al (1994) The American-European Consensus Conference on ARDS. Am J Respir Crit Care Med 149:818–824PubMedGoogle Scholar
  8. 8.
    Villar J, Pérez-Méndez L, López J, Belda J, Blanco J, Saralegui I et al (2007) An early PEEP/FIO2 trial identifies different degrees of lung injury in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 176:795–804PubMedCrossRefGoogle Scholar
  9. 9.
    Villar J, Blanco J, Añón JM, Santos-Bouza A, Blanch L, Ambrós A, Gandía F, Carriedo D, Mosteiro F, Basaldúa S, Fernández RL, Kacmarek RM, ALIEN Network (2011) The ALIEN study: incidence and outcome of acute respiratory distress syndrome in the era of lung protective ventilation. Intensive Care Med 37:1932–1941PubMedCrossRefGoogle Scholar
  10. 10.
    Ferguson ND, Kacmarek RM, Chiche JD, Singh JM, Hallet DC, Mehta S, Stewart TE (2004) Screening of ARDS patients using standardized ventilator settings: influence on enrollment in a clinical trial. Intensive Care Med 30:1111–1116PubMedCrossRefGoogle Scholar
  11. 11.
    Santos C, Ferrer M, Roca J, Torres A, Hernández C, Rodriguez-Roisin R (2000) Pulmonary gas exchange response to oxygen breathing in acute lung injury. Am J Respir Crit Care Med 161:26–31PubMedGoogle Scholar
  12. 12.
    Gattinoni L, Pesenti A, Bombino M, Baglioni S, Rivolta M, Rossi G et al (1988) Relationships between lung computed tomographic density, gas exchange, and PEEP in acute respiratory failure. Anesthesiology 69:824–832PubMedCrossRefGoogle Scholar
  13. 13.
    Karbing DS, Kjaergaard S, Smith BW, Espersen K, Allerød C, Andreassen S, Rees SE (2007) Variation in the PaO2/FiO2 ratio with FiO2: mathematical and experimental description, and clinical relevance. Crit Care 11:R118PubMedCrossRefGoogle Scholar
  14. 14.
    The ARDS Definition Task Force (2012) Acute Respiratory Distress Syndrome. The Berlin definition. JAMA 307:2526–2533Google Scholar
  15. 15.
    González-Castro A, Llorca J, Burón J, Suberviola B, Vallejo A, Miñambres E (2007) Evaluation of the oxygenation ratio as long-term prognostic marker after lung transplantation. Transplant Proc 39:2422–2424PubMedCrossRefGoogle Scholar
  16. 16.
    Shehabi Y, Seppelt I (2008) Pro/Con debate: is procalcitonin useful for guiding antibiotic decision making in critically ill patients? Crit Care 12:211PubMedCrossRefGoogle Scholar
  17. 17.
    Ware LB (2005) Prognostic determinants of acute respiratory distress syndrome in adults: impact on clinical trial design. Crit Care Med 33:S217–S222PubMedCrossRefGoogle Scholar
  18. 18.
    Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354PubMedCrossRefGoogle Scholar
  19. 19.
    Brochard L, Roudot-Thoraval F, Roupie E, Delclaux C, Chastre J, Fernandez-Mondéjar E, Clémenti E, Mancebo J, Factor P, Matamis D, Ranieri M, Blanch L, Rodi G, Mentec H, Dreyfuss D, Ferrer M, Brun-Buisson C, Tobin M, Lemaire F (1998) Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The Multicenter Trail Group on Tidal Volume reduction in ARDS. Am J Respir Crit Care Med 158:1831–1838PubMedGoogle Scholar
  20. 20.
    Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM, Brienza A, Bruno F, Slutsky AS (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282:54–61PubMedCrossRefGoogle Scholar
  21. 21.
    Network ARDS (2002) Randomized, placebo-controlled trial of lisofylline for early treatment of acute lung injury and acute respiratory distress syndrome. Crit Care Med 30:1–6CrossRefGoogle Scholar
  22. 22.
    Spragg RG, Lewis JF, Walmrath HD, Johannigman J, Bellingan G, Laterre PF, Witte MC, Richards GA, Rippin G, Rathgeb F, Häfner D, Taut FJ, Seeger W (2004) Effect of recombinant surfactant protein C-based surfactant on the acute respiratory distress syndrome. N Engl J Med 351:884–892PubMedCrossRefGoogle Scholar
  23. 23.
    Guerin C, Gaillard S, Lemasson S, Ayzac L, Girard R, Beuret P, Palmier B, Le QV, Sirodot M, Rosselli S, Cadiergue V, Sainty JM, Barbe P, Combourieu E, Debatty D, Rouffineau J, Ezingeard E, Millet O, Guelon D, Rodriguez L, Martin O, Renault A, Sibille JP, Kaidomar M (2004) Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. JAMA 292:2379–2387PubMedCrossRefGoogle Scholar
  24. 24.
    Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, Schoenfeld D, Thompson BT, National Heart, Lung, and Blood Institute ARDS Clinical Trials Network (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351:327–336PubMedCrossRefGoogle Scholar
  25. 25.
    Villar J, Kacmarek RM, Pérez-Méndez L, Aguirre-Jaime A (2006) A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med 34:1311–1318PubMedCrossRefGoogle Scholar
  26. 26.
    Mancebo J, Fernández R, Blanch L, Rialp G, Gordo F, Ferrer M, Rodríguez F, Garro P, Ricart P, Vallverdú I, Gich I, Castaño J, Saura P, Domínguez G, Bonet A, Albert RK (2006) A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med 173:1233–1239PubMedCrossRefGoogle Scholar
  27. 27.
    Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Cooper DJ, Davies AR, Hand LE, Zhou Q, Thabane L, Austin P, Lapinsky S, Baxter A, Russell J, Skrobik Y, Ronco JJ, Stewart TE, for the Lung Open Ventilation Study Investigators (2008) Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299:637–645PubMedCrossRefGoogle Scholar
  28. 28.
    Mercat A, Richard JC, Vielle B, Jaber S, Osman D, Diehl JL, Lefrant JY, Prat G, Richecoeur J, Nieszkowska A, Gervais C, Baudot J, Bouadma L, Brochard L, Expiratory Pressure (Express) Study Group (2008) Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299:646–655PubMedCrossRefGoogle Scholar
  29. 29.
    Taccone P, Pesenti A, Latini R, Polli F, Vagginelli F, Mietto C, Caspani L, Raimondi F, Bordone G, Iapichino G, Mancebo J, Guérin C, Ayzac L, Blanch L, Fumagalli R, Tognoni G, Gattinoni L, Prone-Supine II Study Group (2009) Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial. JAMA 302:1977–1984PubMedCrossRefGoogle Scholar
  30. 30.
    Peek GJ, Mugford M, Tiruvoipati R, Wilson A, Allen E, Thalanany MM, Hibbert CL, Truesdale A, Clemens F, Cooper N, Firmin RK, Elbourne D, CESAR trial collaboration (2009) Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 374:1351–1363PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2013

Authors and Affiliations

  • Jesús Villar
    • 1
    • 2
    • 11
  • Lina Pérez-Méndez
    • 1
    • 3
  • Jesús Blanco
    • 1
    • 4
  • José Manuel Añón
    • 5
  • Lluís Blanch
    • 1
    • 6
  • Javier Belda
    • 7
  • Antonio Santos-Bouza
    • 8
  • Rosa Lidia Fernández
    • 1
    • 2
  • Robert M. Kacmarek
    • 9
    • 10
  • Spanish Initiative for Epidemiology, Stratification, and Therapies for ARDS (SIESTA) Network
  1. 1.CIBER de Enfermedades RespiratoriasInstituto de Salud Carlos IIIMadridSpain
  2. 2.Multidisciplinary Organ Dysfunction Evaluation Research Network, Research UnitHospital Universitario Dr. NegrinLas Palmas de Gran CanariaSpain
  3. 3.Research UnitHospital Universitario NS de CandelariaTenerifeSpain
  4. 4.Intensive Care UnitHospital Universitario Río HortegaValladolidSpain
  5. 5.Intensive Care UnitHospital Virgen de La LuzCuencaSpain
  6. 6.Critical Care CenterCorporació Sanitaria i UniversitàriaSabadellSpain
  7. 7.Department of AnesthesiaHospital Clinico de ValenciaValenciaSpain
  8. 8.Intensive Care UnitComplejo Hospitalario Universitario de SantiagoSantiago de CompostelaSpain
  9. 9.Department of Respiratory CareMassachusetts General HospitalBostonUSA
  10. 10.Department of AnesthesiaHarvard UniversityBostonUSA
  11. 11.Multidisciplinary Organ Dysfunction Evaluation Research Network, Research UnitHospital Universitario Dr. NegrinLas Palmas de Gran CanariaSpain

Personalised recommendations