Intensive Care Medicine

, Volume 39, Issue 5, pp 838–846 | Cite as

Blood oxygenation and decarboxylation determinants during venovenous ECMO for respiratory failure in adults

  • Matthieu Schmidt
  • Guillaume Tachon
  • Christine Devilliers
  • Grégoire Muller
  • Guillaume Hekimian
  • Nicolas Bréchot
  • Sybille Merceron
  • Charles Edouard Luyt
  • Jean-Louis Trouillet
  • Jean Chastre
  • Pascal Leprince
  • Alain CombesEmail author



This study was designed to optimize the latest generation venovenous (vv)-extracorporeal membrane oxygenation (ECMO)-circuit configuration and settings based on the evaluation of blood oxygenation and CO2 removal determinants in patients with severe acute respiratory distress syndrome (ARDS) on ultraprotective mechanical ventilation.


Blood gases and hemodynamic parameters were evaluated after changing one of three ECMO settings, namely, circuit blood flow, FiO2ECMO (fraction of inspired oxygen in circuit), or sweep gas flow ventilating the membrane, while leaving the other two parameters at their maximum setting.


Ten mechanically ventilated ARDS patients (mean age 44 ± 16 years; 6 males; mean hemoglobin 8.0 ± 1.8 g/dL) on ECMO for a mean of 9.0 ± 3.8 days) receiving femoro–jugular vv-ECMO were evaluated. vv-ECMO blood flow and FiO2ECMO determined arterial oxygenation. Decreasing the ECMO flow from its baseline maximum value (5.8 ± 0.8 L/min) to 40 % less (2.4 ± 0.3 L/min) significantly decreased mean PaO2 (arterial oxygen tension; 88 ± 24 to 45 ± 9 mm Hg; p < 0.001) and SaO2 (oxygen saturation; 97 ± 2 to 82 ± 10 %; p < 0.001). When the ECMO flow/cardiac output was >60 %, SaO2 was always >90 %. Alternatively, the rate of sweep gas flow through the membrane lung determined blood decarboxylation, while PaCO2 (arterial carbon dioxide tension) was unaffected when the ECMO blood flow and FiO2ECMO were reduced to <2.5 L/min and 40 %, respectively. In three additional patients evaluated before and after red blood cell transfusion, O2 delivery increased after transfusion, allowing lower ECMO flows to reach adequate SaO2.


For severe ARDS patients receiving femoro–jugular vv-ECMO, blood flow was the main determinant of arterial oxygenation, while CO2 elimination depended on sweep gas flow through the oxygenator. An ECMO flow/cardiac output >60 % was constantly associated with adequate blood oxygenation and oxygen transport and delivery.


Extracorporeal membrane oxygenation Salvage therapy Shock Cardiogenic Outcome predictors Doppler echocardiography 

Supplementary material

134_2012_2785_MOESM1_ESM.doc (398 kb)
Supplementary material 1 (DOC 398 kb)


  1. 1.
    Mercat A, Richard JC, Vielle B, Jaber S, Osman D, Diehl JL, Lefrant JY, Prat G, Richecoeur J, Nieszkowska A, Gervais C, Baudot J, Bouadma L, Brochard L (2008) Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299:646–655PubMedCrossRefGoogle Scholar
  2. 2.
    Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Cooper DJ, Davies AR, Hand LE, Zhou Q, Thabane L, Austin P, Lapinsky S, Baxter A, Russell J, Skrobik Y, Ronco JJ, Stewart TE (2008) Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299:637–645PubMedCrossRefGoogle Scholar
  3. 3.
    Rubenfeld GD, Herridge MS (2007) Epidemiology and outcomes of acute lung injury. Chest 131:554–562PubMedCrossRefGoogle Scholar
  4. 4.
    Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, Stern EJ, Hudson LD (2005) Incidence and outcomes of acute lung injury. N Engl J Med 353:1685–1693PubMedCrossRefGoogle Scholar
  5. 5.
    Sud S, Friedrich JO, Taccone P, Polli F, Adhikari NK, Latini R, Pesenti A, Guerin C, Mancebo J, Curley MA, Fernandez R, Chan MC, Beuret P, Voggenreiter G, Sud M, Tognoni G, Gattinoni L (2010) Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med 36:585–599PubMedCrossRefGoogle Scholar
  6. 6.
    Schuerer DJ, Kolovos NS, Boyd KV, Coopersmith CM (2008) Extracorporeal membrane oxygenation: current clinical practice, coding, and reimbursement. Chest 134:179–184PubMedCrossRefGoogle Scholar
  7. 7.
    Chalwin RP, Moran JL, Graham PL (2008) The role of extracorporeal membrane oxygenation for treatment of the adult respiratory distress syndrome: review and quantitative analysis. Anaesth Intensive Care 36:152–161PubMedGoogle Scholar
  8. 8.
    Morris AH, Wallace CJ, Menlove RL, Clemmer TP, Orme JF Jr, Weaver LK, Dean NC, Thomas F, East TD, Pace NL et al (1994) Randomized clinical trial of pressure-controlled inverse ratio ventilation and extracorporeal CO2 removal for adult respiratory distress syndrome. Am J Respir Crit Care Med 149:295–305PubMedCrossRefGoogle Scholar
  9. 9.
    Zapol WM, Snider MT, Hill JD, Fallat RJ, Bartlett RH, Edmunds LH, Morris AH, Peirce EC 2nd, Thomas AN, Proctor HJ, Drinker PA, Pratt PC, Bagniewski A, Miller RG Jr (1979) Extracorporeal membrane oxygenation in severe acute respiratory failure. A randomized prospective study. JAMA 242:2193–2196PubMedCrossRefGoogle Scholar
  10. 10.
    Peek GJ, Mugford M, Tiruvoipati R, Wilson A, Allen E, Thalanany MM, Hibbert CL, Truesdale A, Clemens F, Cooper N, Firmin RK, Elbourne D (2009) Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 374:1351–1363PubMedCrossRefGoogle Scholar
  11. 11.
    Patroniti N, Zangrillo A, Pappalardo F, Peris A, Cianchi G, Braschi A, Iotti GA, Arcadipane A, Panarello G, Ranieri VM, Terragni P, Antonelli M, Gattinoni L, Oleari F, Pesenti A (2011) The Italian ECMO network experience during the 2009 influenza A (H1N1) pandemic: preparation for severe respiratory emergency outbreaks. Intensive Care Med 37:1447–1457PubMedCrossRefGoogle Scholar
  12. 12.
    Noah MA, Peek GJ, Finney SJ, Griffiths MJ, Harrison DA, Grieve R, Sadique MZ, Sekhon JS, McAuley DF, Firmin RK, Harvey C, Cordingley JJ, Price S, Vuylsteke A, Jenkins DP, Noble DW, Bloomfield R, Walsh TS, Perkins GD, Menon D, Taylor BL, Rowan KM (2011) Referral to an extracorporeal membrane oxygenation center and mortality among patients with severe 2009 Influenza A(H1N1). JAMA 306:1659–1668PubMedCrossRefGoogle Scholar
  13. 13.
    Davies A, Jones D, Bailey M, Beca J, Bellomo R, Blackwell N, Forrest P, Gattas D, Granger E, Herkes R, Jackson A, McGuinness S, Nair P, Pellegrino V, Pettila V, Plunkett B, Pye R, Torzillo P, Webb S, Wilson M, Ziegenfuss M (2009) Extracorporeal membrane oxygenation for 2009 Influenza A(H1N1) acute respiratory distress syndrome. JAMA 302:1888–1895PubMedCrossRefGoogle Scholar
  14. 14.
    Vincent JL, De Backer D (2004) Oxygen transport—the oxygen delivery controversy. Intensive Care Med 30:1990–1996PubMedCrossRefGoogle Scholar
  15. 15.
    [No authors listed] (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 342:1301–1308Google Scholar
  16. 16.
    Aissaoui N, Luyt CE, Leprince P, Trouillet JL, Leger P, Pavie A, Diebold B, Chastre J, Combes A (2011) Predictors of successful extracorporeal membrane oxygenation (ECMO) weaning after assistance for refractory cardiogenic shock. Intensive Care Med 37:1738–1745PubMedCrossRefGoogle Scholar
  17. 17.
    MacLaren G, Combes A, Bartlett RH (2012) Contemporary extracorporeal membrane oxygenation for adult respiratory failure: life support in the new era. Intensive Care Med 38:210–220PubMedCrossRefGoogle Scholar
  18. 18.
    Jegger D, Tevaearai HT, Mallabiabarrena I, Horisberger J, Seigneul I, von Segesser LK (2007) Comparing oxygen transfer performance between three membrane oxygenators: effect of temperature changes during cardiopulmonary bypass. Artif Organs 31:290–300PubMedCrossRefGoogle Scholar
  19. 19.
    Walker JL, Gelfond J, Zarzabal LA, Darling E (2009) Calculating mixed venous saturation during veno-venous extracorporeal membrane oxygenation. Perfusion 24:333–339PubMedCrossRefGoogle Scholar
  20. 20.
    Bermudez CA, Rocha RV, Sappington PL, Toyoda Y, Murray HN, Boujoukos AJ (2010) Initial experience with single cannulation for venovenous extracorporeal oxygenation in adults. Ann Thorac Surg 90:991–995PubMedCrossRefGoogle Scholar
  21. 21.
    Rich PB, Awad SS, Crotti S, Hirschl RB, Bartlett RH, Schreiner RJ (1998) A prospective comparison of atrio-femoral and femoro-atrial flow in adult venovenous extracorporeal life support. J Thorac Cardiovasc Surg 116:628–632PubMedCrossRefGoogle Scholar
  22. 22.
    Extracorporeal Life Support Organization (2009) ELSO guidelines. Available at:
  23. 23.
    Vlaar AP, Hofstra JJ, Determann RM, Veelo DP, Paulus F, Kulik W, Korevaar J, de Mol BA, Koopman MM, Porcelijn L, Binnekade JM, Vroom MB, Schultz MJ, Juffermans NP (2011) The incidence, risk factors, and outcome of transfusion-related acute lung injury in a cohort of cardiac surgery patients: a prospective nested case-control study. Blood 117:4218–4225PubMedCrossRefGoogle Scholar
  24. 24.
    Gong MN, Thompson BT, Williams P, Pothier L, Boyce PD, Christiani DC (2005) Clinical predictors of and mortality in acute respiratory distress syndrome: potential role of red cell transfusion. Crit Care Med 33:1191–1198PubMedCrossRefGoogle Scholar
  25. 25.
    Gajic O, Rana R, Winters JL, Yilmaz M, Mendez JL, Rickman OB, O’Byrne MM, Evenson LK, Malinchoc M, DeGoey SR, Afessa B, Hubmayr RD, Moore SB (2007) Transfusion-related acute lung injury in the critically ill: prospective nested case-control study. Am J Respir Crit Care Med 176:886–891PubMedCrossRefGoogle Scholar
  26. 26.
    Kacmarek RM, Wiedemann HP, Lavin PT, Wedel MK, Tutuncu AS, Slutsky AS (2006) Partial liquid ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 173:882–889PubMedCrossRefGoogle Scholar
  27. 27.
    Terragni PP, Del Sorbo L, Mascia L, Urbino R, Martin EL, Birocco A, Faggiano C, Quintel M, Gattinoni L, Ranieri VM (2009) Tidal volume lower than 6 ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal. Anesthesiology 111:826–835PubMedCrossRefGoogle Scholar
  28. 28.
    Batchinsky AI, Jordan BS, Regn D, Necsoiu C, Federspiel WJ, Morris MJ, Cancio LC (2011) Respiratory dialysis: reduction in dependence on mechanical ventilation by venovenous extracorporeal CO2 removal. Crit Care Med 39:1382–1387PubMedCrossRefGoogle Scholar
  29. 29.
    Karagiannidis C, Lubnow M, Philipp A, Riegger GA, Schmid C, Pfeifer M, Mueller T (2010) Autoregulation of ventilation with neurally adjusted ventilatory assist on extracorporeal lung support. Intensive Care Med 36(12):2038–2044Google Scholar
  30. 30.
    Kolobow T, Gattinoni L, Tomlinson TA, Pierce JE (1977) Control of breathing using an extracorporeal membrane lung. Anesthesiology 46:138–141PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2012

Authors and Affiliations

  • Matthieu Schmidt
    • 1
  • Guillaume Tachon
    • 1
  • Christine Devilliers
    • 2
  • Grégoire Muller
    • 1
  • Guillaume Hekimian
    • 1
  • Nicolas Bréchot
    • 1
  • Sybille Merceron
    • 1
  • Charles Edouard Luyt
    • 1
  • Jean-Louis Trouillet
    • 1
  • Jean Chastre
    • 1
  • Pascal Leprince
    • 3
  • Alain Combes
    • 1
    • 4
    Email author
  1. 1.Service de Réanimation Médicale, Groupe Hospitalier Pitié–SalpêtrièreInstitute of Cardiometabolism and Nutrition (iCAN), Assistance Publique-Hôpitaux de Paris–Université Pierre et Marie CurieParis 6France
  2. 2.Service de Biochimie, Hôpital de la Pitié–SalpêtrièreAssistance Publique-Hôpitaux de Paris–Université Pierre et Marie CurieParis 6France
  3. 3.Service de Chirurgie Cardiaque, Institut de Cardiologie, Hôpital de la Pitié–SalpêtrièreAssistance Publique-Hôpitaux de Paris–Université Pierre et Marie CurieParis 6France
  4. 4.Service de Réanimation Médicale, Hôpital de la Pitié–SalpêtrièreInstitute of Cardiometabolism and Nutrition (iCAN)Paris Cedex 13France

Personalised recommendations