Intensive Care Medicine

, Volume 39, Issue 3, pp 365–375 | Cite as

Value of lower respiratory tract surveillance cultures to predict bacterial pathogens in ventilator-associated pneumonia: systematic review and diagnostic test accuracy meta-analysis

  • Nele Brusselaers
  • Sonia Labeau
  • Dirk Vogelaers
  • Stijn Blot



In ventilator-associated pneumonia (VAP), early appropriate antimicrobial therapy may be hampered by involvement of multidrug-resistant (MDR) pathogens.


A systematic review and diagnostic test accuracy meta-analysis were performed to analyse whether lower respiratory tract surveillance cultures accurately predict the causative pathogens of subsequent VAP in adult patients. Selection and assessment of eligibility were performed by three investigators by mutual consideration. Of the 525 studies retrieved, 14 were eligible for inclusion (all in English; published since 1994), accounting for 791 VAP episodes. The following data were collected: study and population characteristics; in- and exclusion criteria; diagnostic criteria for VAP; microbiological workup of surveillance and diagnostic VAP cultures. Sub-analyses were conducted for VAP caused by Staphylococcus aureus, Pseudomonas spp., and Acinetobacter spp., MDR microorganisms, frequency of sampling, and consideration of all versus the most recent surveillance cultures.


The meta-analysis showed a high accuracy of surveillance cultures, with pooled sensitivities up to 0.75 and specificities up to 0.92 in culture-positive VAP. The area under the curve (AUC) of the hierarchical summary receiver-operating characteristic curve demonstrates moderate accuracy (AUC: 0.90) in predicting multidrug resistance. A sampling frequency of >2/week (sensitivity 0.79; specificity 0.96) and consideration of only the most recent surveillance culture (sensitivity 0.78; specificity 0.96) are associated with a higher accuracy of prediction.


This study provides evidence for the benefit of surveillance cultures in predicting MDR bacterial pathogens in VAP. However, clinical and statistical heterogeneity, limited samples sizes, and bias remain important limitations of this meta-analysis.


Ventilator-associated pneumonia VAP Surveillance cultures Diagnostic test accuracy meta-analysis Multidrug resistance 

Supplementary material

134_2012_2759_MOESM1_ESM.docx (112 kb)
Supplementary material 1 (DOCX 112 kb)
134_2012_2759_MOESM2_ESM.xlsx (12 kb)
Supplementary material 2 (XLSX 12 kb)


  1. 1.
    Safdar N, Dezfulian C, Collard HR, Saint S (2005) Clinical and economic consequences of ventilator-associated pneumonia: a systematic review. Crit Care Med 33:2184–2193PubMedCrossRefGoogle Scholar
  2. 2.
    Blot S, Depuydt P, Vogelaers D (2008) Maximizing rates of empiric appropriate antibiotic therapy with minimized use of broad-spectrum agents: are surveillance cultures the key? Intensive Care Med 34:2130–2133PubMedCrossRefGoogle Scholar
  3. 3.
    Timsit JF, Zahar JR, Chevret S (2011) Attributable mortality of ventilator-associated pneumonia. Curr Opin Crit Care 17:464–471PubMedCrossRefGoogle Scholar
  4. 4.
    Kollef M (2003) Appropriate empirical antibacterial therapy for nosocomial infections: getting it right the first time. Drugs 63:2157–2168PubMedCrossRefGoogle Scholar
  5. 5.
    Blot S, Vandewoude K (2004) Early detection of systemic infections. Acta Clin Belg 59:20–23PubMedGoogle Scholar
  6. 6.
    Luna CM, Vujacich P, Niederman MS, Vay C, Gherardi C, Matera J, Jolly EC (1997) Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia. Chest 111:676–685PubMedCrossRefGoogle Scholar
  7. 7.
    Kollef MH, Ward S (1998) The influence of mini-BAL cultures on patient outcomes: implications for the antibiotic management of ventilator-associated pneumonia. Chest 113:412–420PubMedCrossRefGoogle Scholar
  8. 8.
    Kollef MH (1999) Antimicrobial therapy of ventilator-associated pneumonia: how to select an appropriate drug regimen. Chest 115:8–11PubMedCrossRefGoogle Scholar
  9. 9.
    Trouillet JL, Chastre J, Vuagnat A, Joly-Guillou ML, Combaux D, Dombret MC, Gibert C (1998) Ventilator-associated pneumonia caused by potentially drug-resistant bacteria. Am J Respir Crit Care Med 157:531–539PubMedGoogle Scholar
  10. 10.
    Masterton RG (2009) The new treatment paradigm and the role of carbapenems. Int J Antimicrob Agents 33:105–110PubMedCrossRefGoogle Scholar
  11. 11.
    Blot S (2008) Limiting the attributable mortality of nosocomial infection and multidrug resistance in intensive care units. Clin Microbiol Infect 14:5–13PubMedCrossRefGoogle Scholar
  12. 12.
    Vogelaers D, De Bels D, Foret F, Cran S, Gilbert E, Schoonheydt K, Blot S (2010) Patterns of antimicrobial therapy in severe nosocomial infections: empiric choices, proportion of appropriate therapy, and adaptation rates–a multicentre, observational survey in critically ill patients. Int J Antimicrob Agents 35:375–381PubMedCrossRefGoogle Scholar
  13. 13.
    Bryant LR, Trinkle JK, Mobin-Uddin K, Griffen WO Jr (1972) Interpretation of tracheal cultures in patients with intubation and mechanical ventilation. Am Surg 38:537–541PubMedGoogle Scholar
  14. 14.
    Polk HC Jr (1975) Quantitative tracheal cultures in surgical patients requiring mechanical ventilatory assistance. Surgery 78:485–491PubMedGoogle Scholar
  15. 15.
    Baba H, Nimmo GR, Allworth AM, Boots RJ, Hayashi Y, Lipman J, Paterson DL (2011) The role of surveillance cultures in the prediction of susceptibility patterns of Gram-negative bacilli in the intensive care unit. Eur J Clin Microbiol Infect Dis 30:739–744PubMedCrossRefGoogle Scholar
  16. 16.
    Blot S, Depuydt P, Vogelaers D, Decruyenaere J, De Waele J, Hoste E, Peleman R, Claeys G, Verschraegen G, Colardyn F, Vandewoude K (2005) Colonization status and appropriate antibiotic therapy for nosocomial bacteremia caused by antibiotic-resistant gram-negative bacteria in an intensive care unit. Infect Control Hosp Epidemiol 26:575–579PubMedCrossRefGoogle Scholar
  17. 17.
    Reddy P, Malczynski M, Obias A, Reiner S, Jin N, Huang J, Noskin GA, Zembower T (2007) Screening for extended-spectrum beta-lactamase-producing Enterobacteriaceae among high-risk patients and rates of subsequent bacteremia. Clin Infect Dis 45:846–852PubMedCrossRefGoogle Scholar
  18. 18.
    Depuydt P, Benoit D, Vogelaers D, Claeys G, Verschraegen G, Vandewoude K, Decruyenaere J, Blot S (2006) Outcome in bacteremia associated with nosocomial pneumonia and the impact of pathogen prediction by tracheal surveillance cultures. Intensive Care Med 32:1773–1781PubMedCrossRefGoogle Scholar
  19. 19.
    Leeflang MM, Deeks JJ, Gatsonis C, Bossuyt PM (2008) Systematic reviews of diagnostic test accuracy. Ann Intern Med 149:889–897PubMedGoogle Scholar
  20. 20.
    Koulenti D, Lisboa T, Brun-Buisson C, Krueger W, Macor A, Sole-Violan J, Diaz E, Topeli A, DeWaele J, Carneiro A, Martin-Loeches I, Armaganidis A, Rello J (2009) Spectrum of practice in the diagnosis of nosocomial pneumonia in patients requiring mechanical ventilation in European intensive care units. Crit Care Med 37:2360–2368PubMedCrossRefGoogle Scholar
  21. 21.
    Jones CM, Ashrafian H, Skapinakis P, Arora S, Darzi A, Dimopoulos K, Athanasiou T (2010) Diagnostic accuracy meta-analysis: a review of the basic principles of interpretation and application. Int J Cardiol 140:138–144PubMedCrossRefGoogle Scholar
  22. 22.
    Nair S, Sen N, Peter JV, Raj JP, Brahmadathan KN (2008) Role of quantitative endotracheal aspirate and cultures as a surveillance and diagnostic tool for ventilator associated pneumonia: a pilot study. Indian J Med Sci 62:304–313PubMedCrossRefGoogle Scholar
  23. 23.
    de Latorre FJ, Pont T, Ferrer A, Rossello J, Palomar M, Planas M (1995) Pattern of tracheal colonization during mechanical ventilation. Am J Respir Crit Care Med 152:1028–1033PubMedGoogle Scholar
  24. 24.
    Gursel G, Aydogdu M, Nadir Ozis T, Tasyurek S (2010) Comparison of the value of initial and serial endotracheal aspirate surveillance cultures in predicting the causative pathogen of ventilator-associated pneumonia. Scand J Infect Dis 42:341–346PubMedCrossRefGoogle Scholar
  25. 25.
    Albert S, Kirchner J, Thomas H, Behne M, Schur J, Brade V (1997) Role of quantitative cultures and microscopic examinations of endotracheal aspirates in the diagnosis of pulmonary infections in ventilated patients. J Hosp Infect 37:25–37PubMedCrossRefGoogle Scholar
  26. 26.
    Aydogdu M, Gursel G, Hizel K, Ozis TN (2010) Comparison of the serial surveillance with quantitative and non-quantitative tracheal aspirate in predicting ventilator-associated pneumonia etiology in patients receiving antibiotic therapy. Minerva Anestesiol 76:600–608PubMedGoogle Scholar
  27. 27.
    Bagnulo H, Godino M, Galiana A, Bertulo M, Pedreira W (2007) Are routine endotracheal aspirates predictive of the etiology of ventilator-associated pneumonia? Crit Care 11(Suppl 2):p 87CrossRefGoogle Scholar
  28. 28.
    Bouza E, Perez A, Munoz P, Jesus Perez M, Rincon C, Sanchez C, Martin-Rabadan P, Riesgo M (2003) Ventilator-associated pneumonia after heart surgery: a prospective analysis and the value of surveillance. Crit Care Med 31:1964–1970PubMedCrossRefGoogle Scholar
  29. 29.
    Brusselaers N, Logie D, Vogelaers D, Monstrey S, Blot S (2012) Burns, inhalation injury and ventilator-associated pneumonia: value of routine surveillance cultures. Burns 38:364–370PubMedCrossRefGoogle Scholar
  30. 30.
    Cendrero Cardenosa JA, Sole-Violan J, Bordes Benitez A, Noguera Catalan J, Arroyo Fernandez J, Saavedra Santana P, Rodriguez de Castro F (1999) Role of different routes of tracheal colonization in the development of pneumonia in patients receiving mechanical ventilation. Chest 116:462–470CrossRefGoogle Scholar
  31. 31.
    Delclaux C, Roupie E, Blot F, Brochard L, Lemaire F, Brun-Buisson C (1997) Lower respiratory tract colonization and infection during severe acute respiratory distress syndrome: incidence and diagnosis. Am J Respir Crit Care Med 156:1092–1098PubMedGoogle Scholar
  32. 32.
    Depuydt P, Benoit D, Vogelaers D, Decruyenaere J, Vandijck D, Claeys G, Verschraegen G, Blot S (2008) Systematic surveillance cultures as a tool to predict involvement of multidrug antibiotic resistant bacteria in ventilator-associated pneumonia. Intensive Care Med 34:675–682PubMedCrossRefGoogle Scholar
  33. 33.
    Ewig S, Torres A, El-Ebiary M, Fabregas N, Hernandez C, Gonzalez J, Nicolas JM, Soto L (1999) Bacterial colonization patterns in mechanically ventilated patients with traumatic and medical head injury. Incidence, risk factors, and association with ventilator-associated pneumonia. Am J Respir Crit Care Med 159:188–198PubMedGoogle Scholar
  34. 34.
    Flanagan PG, Findlay GP, Magee JT, Ionescu A, Barnes RA, Smithies M (2000) The diagnosis of ventilator-associated pneumonia using non-bronchoscopic, non-directed lung lavages. Intensive Care Med 26:20–30PubMedCrossRefGoogle Scholar
  35. 35.
    Hayon J, Figliolini C, Combes A, Trouillet JL, Kassis N, Dombret MC, Gibert C, Chastre J (2002) Role of serial routine microbiologic culture results in the initial management of ventilator-associated pneumonia. Am J Respir Crit Care Med 165:41–46PubMedGoogle Scholar
  36. 36.
    Joseph NM, Sistla S, Dutta TK, Badhe AS, Parija SC (2010) Ventilator-associated pneumonia: role of colonizers and value of routine endotracheal aspirate cultures. Int J Infect Dis 14:e723–e729PubMedCrossRefGoogle Scholar
  37. 37.
    Lampati L, Maggioni E, Langer M, Malacarne P, Mozzo R, Pesenti A, Fumagalli R (2009) Can routine surveillance samples from tracheal aspirate predict bacterial flora in cases of ventilator-associated pneumonia? Minerva Anestesiol 75:555–562PubMedGoogle Scholar
  38. 38.
    Malacarne P, Corini M, Maremmani P, Viaggi B, Verdigi S (2007) Diagnostic characteristics of routine surveillance cultures of endotracheal aspirate samples in cases of late-onset ventilator-associated pneumonia due to Acinetobacter baumannii. Infect Control Hosp Epidemiol 28:867–869PubMedCrossRefGoogle Scholar
  39. 39.
    Michel F, Franceschini B, Berger P, Arnal JM, Gainnier M, Sainty JM, Papazian L (2005) Early antibiotic treatment for BAL-confirmed ventilator-associated pneumonia: a role for routine endotracheal aspirate cultures. Chest 127:589–597PubMedCrossRefGoogle Scholar
  40. 40.
    Papadomichelakis E, Kontopidou F, Antoniadou A, Poulakou G, Koratzanis E, Kopterides P, Mavrou I, Armaganidis A, Giamarellou H (2008) Screening for resistant gram-negative microorganisms to guide empiric therapy of subsequent infection. Intensive Care Med 34:2169–2175PubMedCrossRefGoogle Scholar
  41. 41.
    Sirvent JM, Torres A, Vidaur L, Armengol J, de Batlle J, Bonet A (2000) Tracheal colonisation within 24 h of intubation in patients with head trauma: risk factor for developing early-onset ventilator-associated pneumonia. Intensive Care Med 26:1369–1372PubMedCrossRefGoogle Scholar
  42. 42.
    Valles J, Mariscal D, Cortes P, Coll P, Villagra A, Diaz E, Artigas A, Rello J (2004) Patterns of colonization by Pseudomonas aeruginosa in intubated patients: a 3-year prospective study of 1,607 isolates using pulsed-field gel electrophoresis with implications for prevention of ventilator-associated pneumonia. Intensive Care Med 30:1768–1775PubMedCrossRefGoogle Scholar
  43. 43.
    Yang K, Zhuo H, Guglielmo BJ, Wiener-Kronish J (2009) Multidrug-resistant Pseudomonas aeruginosa ventilator-associated pneumonia: the role of endotracheal aspirate surveillance cultures. Ann Pharmacother 43:28–35PubMedCrossRefGoogle Scholar
  44. 44.
    A’Court CH, Garrard CS, Crook D, Bowler I, Conlon C, Peto T, Anderson E (1993) Microbiological lung surveillance in mechanically ventilated patients, using non-directed bronchial lavage and quantitative culture. Q J Med 86:635–648PubMedCrossRefGoogle Scholar
  45. 45.
    Bergmans DC, Bonten MJ, Stobberingh EE, van Tiel FH, van der Geest S, de Leeuw PW, Gaillard CA (1998) Colonization with Pseudomonas aeruginosa in patients developing ventilator-associated pneumonia. Infect Control Hosp Epidemiol 19:853–855PubMedCrossRefGoogle Scholar
  46. 46.
    Boots RJ, Phillips GE, George N, Faoagali JL (2008) Surveillance culture utility and safety using low-volume blind bronchoalveolar lavage in the diagnosis of ventilator-associated pneumonia. Respirology 13:87–96PubMedCrossRefGoogle Scholar
  47. 47.
    Fussle R, Biscoping J, Zeiler D, Michaelis G, Sziegoleit A (1991) Microbiologic monitoring of ventilated intensive-care patients: a concept for diagnosis and therapy of pulmonary infections. Anaesthesist 40:491–496PubMedGoogle Scholar
  48. 48.
    George DL, Falk PS, Wunderink RG, Leeper KV Jr, Meduri GU, Steere EL, Corbett CE, Mayhall CG (1998) Epidemiology of ventilator-acquired pneumonia based on protected bronchoscopic sampling. Am J Respir Crit Care Med 158:1839–1847PubMedGoogle Scholar
  49. 49.
    Jung B, Sebbane M, Chanques G, Courouble P, Verzilli D, Perrigault PF, Jean-Pierre H, Eledjam JJ, Jaber S (2009) Previous endotracheal aspirate allows guiding the initial treatment of ventilator-associated pneumonia. Intensive Care Med 35:101–107PubMedCrossRefGoogle Scholar
  50. 50.
    Konrad F, Heeg K, Wiedeck H, Kilian J (1990) Routine throat swabs in artificially ventilated patients: meaningful bacteriologic monitoring or a needless procedure? Anaesthesist 39:323–329PubMedGoogle Scholar
  51. 51.
    Sanders KM, Adhikari NK, Friedrich JO, Day A, Jiang X, Heyland D (2008) Previous cultures are not clinically useful for guiding empiric antibiotics in suspected ventilator-associated pneumonia: secondary analysis from a randomized trial. J Crit Care 23:58–63PubMedCrossRefGoogle Scholar
  52. 52.
    Wear RE, Morrow LE (2007) Quantitative surveillance tracheal aspirate dynamics as a predictor of ventilator-associated pneumonia. Crit Care Med 35:796Google Scholar
  53. 53.
    Zhuo H, Yang K, Lynch SV, Dotson RH, Glidden DV, Singh G, Webb WR, Elicker BM, Garcia O, Brown R, Sawa Y, Misset B, Wiener-Kronish JP (2008) Increased mortality of ventilated patients with endotracheal Pseudomonas aeruginosa without clinical signs of infection. Crit Care Med 36:2495–2503PubMedCrossRefGoogle Scholar
  54. 54.
    Logie D, Brusselaers N, Monstrey S, Vogelaers D, Blot S (2010) Incidence of ventilator-associated pneumonia in burn patients with inhalation injury and the value of routine endotracheal aspirate surveillance cultures to predict involvement of multidrug resistant microbial etiology. Acta Clin Belg 65:461Google Scholar
  55. 55.
    Depuydt PO, Blot SI, Benoit DD, Claeys GW, Verschraegen GL, Vandewoude KH, Vogelaers DP, Decruyenaere JM, Colardyn FA (2006) Antimicrobial resistance in nosocomial bloodstream infection associated with pneumonia and the value of systematic surveillance cultures in an adult intensive care unit. Crit Care Med 34:653–659PubMedCrossRefGoogle Scholar
  56. 56.
    Berton DC, Kalil AC, Teixeira PJ (2012) Quantitative versus qualitative cultures of respiratory secretions for clinical outcomes in patients with ventilator-associated pneumonia. Cochrane Database Syst Rev 1: CD006482Google Scholar
  57. 57.
    Rutjes AW, Reitsma JB, Di Nisio M, Smidt N, van Rijn JC, Bossuyt PM (2006) Evidence of bias and variation in diagnostic accuracy studies. CMAJ 174:469–476PubMedGoogle Scholar
  58. 58.
    Munoz P, Cercenado E, Giannella M, Bouza E (2009) Rapid detection of micro-organism resistance in patients with ventilator-associated pneumonia. Clin Pulm Med 16:302–308CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2012

Authors and Affiliations

  • Nele Brusselaers
    • 1
    • 2
  • Sonia Labeau
    • 1
    • 3
  • Dirk Vogelaers
    • 1
  • Stijn Blot
    • 1
    • 3
  1. 1.Department of Internal Medicine, Infectious Diseases and Psychosomatic MedicineGhent University HospitalGhentBelgium
  2. 2.Upper Gastrointestinal Research, Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
  3. 3.Ghent University College VesaliusGhentBelgium

Personalised recommendations