Advertisement

Intensive Care Medicine

, Volume 39, Issue 2, pp 258–266 | Cite as

Mesenteric blood flow, glucose absorption and blood pressure responses to small intestinal glucose in critically ill patients older than 65 years

  • Jennifer A. SimEmail author
  • M. Horowitz
  • M. J. Summers
  • L. G. Trahair
  • R. S. Goud
  • A. V. Zaknic
  • T. Hausken
  • J. D. Fraser
  • M. J. Chapman
  • K. L. Jones
  • A. M. Deane
Original

Abstract

Purpose

To compare nutrient-stimulated changes in superior mesenteric artery (SMA) blood flow, glucose absorption and glycaemia in individuals older than 65 years with, and without, critical illness.

Methods

Following a 1-h ‘observation’ period (t 0t 60), 0.9 % saline and glucose (1 kcal/ml) were infused directly into the small intestine at 2 ml/min between t 60t 120, and t 120t 180, respectively. SMA blood flow was measured using Doppler ultrasonography at t 60 (fasting), t 90 and t 150 and is presented as raw values and nutrient-stimulated increment from baseline (Δ). Glucose absorption was evaluated using serum 3-O-methylglucose (3-OMG) concentrations during, and for 1 h after, the glucose infusion (i.e. t 120t 180 and t 120t 240). Mean arterial pressure was recorded between t 60t 240. Data are presented as median (25th, 75th percentile).

Results

Eleven mechanically ventilated critically ill patients [age 75 (69, 79) years] and nine healthy volunteers [70 (68, 77) years] were studied. The magnitude of the nutrient-stimulated increase in SMA flow was markedly less in the critically ill when compared with healthy subjects [Δt 150: patients 115 (−138, 367) versus health 836 (618, 1,054) ml/min; P = 0.001]. In patients, glucose absorption was reduced during, and for 1 h after, the glucose infusion when compared with health [AUC120–180: 4.571 (2.591, 6.551) versus 11.307 (8.447, 14.167) mmol/l min; P < 0.001 and AUC120–240: 26.5 (17.7, 35.3) versus 40.6 (31.7, 49.4) mmol/l min; P = 0.031]. A close relationship between the nutrient-stimulated increment in SMA flow and glucose absorption was evident (3-OMG AUC120–180 and ∆SMA flow at t 150: r 2 = 0.29; P < 0.05).

Conclusions

In critically ill patients aged >65 years, stimulation of SMA flow by small intestinal glucose infusion may be attenuated, which could account for the reduction in glucose absorption.

Keywords

Critical illness Superior mesenteric artery Glucose absorption Nutrition Postprandial hypotension Splanchnic blood flow 

Abbreviations

3-OMG

3-O-Methylglucose

ATP

Adenosine triphosphate

GLUT-2

Glucose transporter-2

SGLT-1

Sodium glucose luminal transporter-1

SMA

Superior mesenteric artery

MAP

Mean arterial blood pressure

Notes

Acknowledgments

The study was supported by a NHMRC project grant (1025648). Ms. Jennifer Sim was supported by a Florey Honours Bachelor of Medical Sciences 2011 Scholarship, and Dr. Adam Deane was supported by a Sylvia and Charles Viertel Charitable Foundation Clinical Investigatorship. We acknowledge the guidance of Ms. Kylie Lange regarding appropriate statistical testing.

References

  1. 1.
    Heyland DK, Dhaliwal R, Day A, Jain M, Drover J (2004) Validation of the Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients: results of a prospective observational study. Crit Care Med 32:2260–2266PubMedGoogle Scholar
  2. 2.
    Martindale RG, McClave SA, Vanek VW, McCarthy M, Roberts P, Taylor B, Ochoa JB, Napolitano L, Cresci G (2009) Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition: executive summary. Crit Care Med 37:1757–1761PubMedCrossRefGoogle Scholar
  3. 3.
    Berger MM, Chiolero RL, Pannatier A, Cayeux MC, Tappy L (1997) A 10-year survey of nutritional support in a surgical ICU: 1986–1995. Nutrition 13:870–877PubMedCrossRefGoogle Scholar
  4. 4.
    Villet S, Chiolero RL, Bollmann MD, Revelly JP, Cayeux RNM, Delarue J, Berger MM (2005) Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. Clin Nutr 24:502–509PubMedCrossRefGoogle Scholar
  5. 5.
    Deane A, Chapman MJ, Fraser RJ, Bryant LK, Burgstad C, Nguyen NQ (2007) Mechanisms underlying feed intolerance in the critically ill: implications for treatment. World J Gastroenterol 13:3909–3917PubMedGoogle Scholar
  6. 6.
    Heyland DK, Tougas G, King D, Cook DJ (1996) Impaired gastric emptying in mechanically ventilated, critically ill patients. Intensive Care Med 22:1339–1344PubMedCrossRefGoogle Scholar
  7. 7.
    Davies AR, Froomes PR, French CJ, Bellomo R, Gutteridge GA, Nyulasi I, Walker R, Sewell RB (2002) Randomized comparison of nasojejunal and nasogastric feeding in critically ill patients. Crit Care Med 30:586–590PubMedCrossRefGoogle Scholar
  8. 8.
    Montecalvo MA, Steger KA, Farber HW, Smith BF, Dennis RC, Fitzpatrick GF, Pollack SD, Korsberg TZ, Birkett DH, Hirsch EF et al (1992) Nutritional outcome and pneumonia in critical care patients randomized to gastric versus jejunal tube feedings. The Critical Care Research Team. Crit Care Med 20:1377–1387PubMedCrossRefGoogle Scholar
  9. 9.
    Hsu CW, Sun SF, Lin SL, Kang SP, Chu KA, Lin CH, Huang HH (2009) Duodenal versus gastric feeding in medical intensive care unit patients: a prospective, randomized, clinical study. Crit Care Med 37:1866–1872PubMedCrossRefGoogle Scholar
  10. 10.
    Kearns PJ, Chin D, Mueller L, Wallace K, Jensen WA, Kirsch CM (2000) The incidence of ventilator-associated pneumonia and success in nutrient delivery with gastric versus small intestinal feeding: a randomized clinical trial. Crit Care Med 28:1742–1746PubMedCrossRefGoogle Scholar
  11. 11.
    Meert KL, Daphtary KM, Metheny NA (2004) Gastric vs small-bowel feeding in critically ill children receiving mechanical ventilation: a randomized controlled trial. Chest 126:872–878PubMedCrossRefGoogle Scholar
  12. 12.
    Deane AM, Summers MJ, Zaknic AV, Chapman MJ, Di Bartolomeo AE, Bellon M, Maddox A, Russo A, Horowitz M, Fraser RJ (2011) Glucose absorption and small intestinal transit in critical illness. Crit Care Med 39:1282–1288PubMedCrossRefGoogle Scholar
  13. 13.
    van Schijndel RJMS, Wierdsma NJ, van Heijningen EMB, Weijs PJM, de Groot SDW, Girbes ARJ (2006) Fecal energy losses in enterally fed intensive care patients: an explorative study using bomb calorimetry. Clin Nutr 25:758–764CrossRefGoogle Scholar
  14. 14.
    Levin RJ (1994) Digestion and absorption of carbohydrates–from molecules and membranes to humans. Am J Clin Nutr 59:690S–698SPubMedGoogle Scholar
  15. 15.
    Boucher BA, Wood GC, Swanson JM (2006) Pharmacokinetic changes in critical illness. Crit Care Clin 22:255–271PubMedCrossRefGoogle Scholar
  16. 16.
    Wright EM, Hirayama BA, Loo DF (2007) Active sugar transport in health and disease. J Intern Med 261:32–43PubMedCrossRefGoogle Scholar
  17. 17.
    Johnston JD, Harvey CJ, Menzies IS, Treacher DF (1996) Gastrointestinal permeability and absorptive capacity in sepsis. Crit Care Med 24:1144–1149PubMedCrossRefGoogle Scholar
  18. 18.
    Chapman MJ, Fraser RJ, Matthews G, Russo A, Bellon M, Besanko LK, Jones KL, Butler R, Chatterton B, Horowitz M (2009) Glucose absorption and gastric emptying in critical illness. Crit Care 13:R140PubMedCrossRefGoogle Scholar
  19. 19.
    Gentilcore D, Hausken T, Meyer JH, Chapman IM, Horowitz M, Jones KL (2008) Effects of intraduodenal glucose, fat, and protein on blood pressure, heart rate, and splanchnic blood flow in healthy older subjects. Am J Clin Nutr 87:156–161PubMedGoogle Scholar
  20. 20.
    Vanis L, Gentilcore D, Rayner CK, Wishart JM, Horowitz M, Feinle-Bisset C, Jones KL (2011) Effects of small intestinal glucose load on blood pressure, splanchnic blood flow, glycemia, and GLP-1 release in healthy older subjects. Am J Physiol Regul Integr Comp Physiol 300:R1524–R1531PubMedCrossRefGoogle Scholar
  21. 21.
    Trahair LG, Vanis L, Gentilcore D, Lange K, Rayner CK, Horowitz M, Jones KL (2012) Effects of variations in duodenal glucose load on blood pressure, heart rate, superior mesenteric artery blood flow and plasma noradrenaline in healthy young and older subjects. Clin Sci (Lond) 122:271–279CrossRefGoogle Scholar
  22. 22.
    Araghi A, Bander JJ, Guzman JA (2006) Arterial blood pressure monitoring in overweight critically ill patients: invasive or noninvasive? Crit Care 10:R64PubMedCrossRefGoogle Scholar
  23. 23.
    Thibault R, Pichard C, Wernerman J, Bendjelid K (2011) Cardiogenic shock and nutrition: safe? Intensive Care Med 37:35–45PubMedCrossRefGoogle Scholar
  24. 24.
    Kuo P, Wishart JM, Bellon M, Smout AJ, Holloway RH, Fraser RJ, Horowitz M, Jones KL, Rayner CK (2010) Effects of physiological hyperglycemia on duodenal motility and flow events, glucose absorption, and incretin secretion in healthy humans. J Clin Endocrinol Metab 95:3893–3900PubMedCrossRefGoogle Scholar
  25. 25.
    Deane AM, Fraser RJ, Young RJ, Foreman B, O’Conner SN, Chapman MJ (2009) Evaluation of a bedside technique for postpyloric placement of feeding catheters. Crit Care Resusc 11:180–183PubMedGoogle Scholar
  26. 26.
    Perko MJ (2001) Duplex ultrasound for assessment of superior mesenteric artery blood flow. Eur J Vasc Endovasc Surg 21:106–117PubMedCrossRefGoogle Scholar
  27. 27.
    Rokyta R Jr, Matejovic M, Krouzecky A, Senft V, Trefil L, Novak I (2004) Post-pyloric enteral nutrition in septic patients: effects on hepato-splanchnic hemodynamics and energy status. Intensive Care Med 30:714–717PubMedCrossRefGoogle Scholar
  28. 28.
    Revelly JP, Tappy L, Berger MM, Gersbach P, Cayeux C, Chiolero R (2001) Early metabolic and splanchnic responses to enteral nutrition in postoperative cardiac surgery patients with circulatory compromise. Intensive Care Med 27:540–547PubMedCrossRefGoogle Scholar
  29. 29.
    Gatt M, MacFie J, Anderson AD, Howell G, Reddy BS, Suppiah A, Renwick I, Mitchell CJ (2009) Changes in superior mesenteric artery blood flow after oral, enteral, and parenteral feeding in humans. Crit Care Med 37:171–176PubMedCrossRefGoogle Scholar
  30. 30.
    Kolkman JJ, Mensink PB (2003) Non-occlusive mesenteric ischaemia: a common disorder in gastroenterology and intensive care. Best Pract Res Clin Gastroenterol 17:457–473PubMedCrossRefGoogle Scholar
  31. 31.
    Vanis L, Gentilcore D, Hausken T, Pilichiewicz AN, Lange K, Rayner CK, Feinle-Bisset C, Meyer JH, Horowitz M, Jones KL (2010) Effects of gastric distension on blood pressure and superior mesenteric artery blood flow responses to intraduodenal glucose in healthy older subjects. Am J Physiol Regul Integr Comp Physiol 299:R960–R967PubMedCrossRefGoogle Scholar
  32. 32.
    Hoste EA, Damen J, Vanholder RC, Lameire NH, Delanghe JR, Van den Hauwe K, Colardyn FA (2005) Assessment of renal function in recently admitted critically ill patients with normal serum creatinine. Nephrol Dial Transplant 20:747–753PubMedCrossRefGoogle Scholar
  33. 33.
    De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2012

Authors and Affiliations

  • Jennifer A. Sim
    • 1
    Email author
  • M. Horowitz
    • 2
  • M. J. Summers
    • 3
  • L. G. Trahair
    • 2
  • R. S. Goud
    • 3
  • A. V. Zaknic
    • 3
  • T. Hausken
    • 4
  • J. D. Fraser
    • 3
  • M. J. Chapman
    • 1
    • 3
  • K. L. Jones
    • 2
  • A. M. Deane
    • 1
    • 3
  1. 1.Discipline of Acute Care MedicineUniversity of AdelaideAdelaideAustralia
  2. 2.Discipline of MedicineUniversity of Adelaide, Royal Adelaide HospitalAdelaideAustralia
  3. 3.Intensive Care Unit, Level 4, North BuildingRoyal Adelaide HospitalAdelaideAustralia
  4. 4.Medical Department, Institute of MedicineUniversity of Bergen, Haukeland University HospitalBergenNorway

Personalised recommendations