Advertisement

Intensive Care Medicine

, Volume 38, Issue 12, pp 1917–1929 | Cite as

Electrical impedance tomography: the holy grail of ventilation and perfusion monitoring?

  • Steffen Leonhardt
  • Burkhard Lachmann
Review

Abstract

This review summarizes the state-of-the-art in electrical impedance tomography (EIT) for ventilation and perfusion imaging. EIT is a relatively new technology used to image regional impedance distributions in a cross-sectional area of the body. After the introduction, a brief overview of the recent history is provided followed by a review of the literature on regional ventilation monitoring using EIT. Several recently presented indices that are useful to extract information from EIT image streams are described. Selected experimental and clinical findings are discussed with respect to future routine applications in intensive care. Finally, past and ongoing research activities aimed at obtaining cardiac output and regional perfusion information from EIT image streams are summarized.

Keywords

Electrical impedance tomography EIT Regional ventilation monitoring Regional perfusion monitoring 

Notes

Acknowledgments

The authors thank Laraine Visser-Isles, Rotterdam, the Netherlands, for proofreading of the English manuscript. The authors gratefully acknowledge the permission to use the Dräger EIT Evaluation Kit 2 (EEK2) for unrestricted research into animals and human trials.

Conflicts of interest

S. Leonhardt discloses financial support for unrestricted research into EIT-based perfusion imaging from Dräger Medical GmbH, Lübeck, Germany. He has also received honoraria for lecturing and consulting.

Supplementary material

Supplementary material 1 (MPG 2668 kb)

134_2012_2684_MOESM2_ESM.avi (4.7 mb)
Supplementary material 2 (AVI 4810 kb)

References

  1. 1.
    Arnold JH (2004) Electrical impedance tomography: on the path to the holy grail. Crit Care Med 32:894–895PubMedCrossRefGoogle Scholar
  2. 2.
    Bodenstein M, David M, Markstaller K (2009) Principles of electrical impedance tomography and its clinical application. Crit Care Med 37:713–724PubMedCrossRefGoogle Scholar
  3. 3.
    Costa EL, Lima RG, Amato MB (2009) Electrical impedance tomography. Curr Opin Crit Care 15:18–24PubMedCrossRefGoogle Scholar
  4. 4.
    Muders T, Luepschen H, Putensen C (2010) Impedance tomography as a new monitoring technique. Curr Opin Crit Care 16:269–275PubMedCrossRefGoogle Scholar
  5. 5.
    Moerer O, Hahn G, Quintel M (2011) Lung impedance measurements to monitor alveolar ventilation. Curr Opin Crit Care 17:260–267PubMedCrossRefGoogle Scholar
  6. 6.
    Putensen C, Wrigge H, Zinserling J (2007) Electrical impedance tomography guided ventilation therapy. Curr Opin Crit Care 13:344–350PubMedCrossRefGoogle Scholar
  7. 7.
    Domenighetti G, Maggiorini M (2010) Electrical impedance tomography to guide ventilation in ALI-ARDS patients: a research tool for zealous physiologists or an imminent support for the real world intensivist? Minerva Anestesiol 76:986–988PubMedGoogle Scholar
  8. 8.
    Frerichs I, Weiler N (2012) Electrical impedance tomography: the next game level. Crit Care Med 40:1015–1016PubMedCrossRefGoogle Scholar
  9. 9.
    Avis NJ, Barber DC (1994) Image reconstruction using non-adjacent drive configurations. Physiol Meas 15(Suppl 2a):153–160CrossRefGoogle Scholar
  10. 10.
    Malmivuo J, Plonsey R (1995) Bioelectromagnetism—principles and applications of bioelectric and biomagnetic fields. Oxford University Press, New YorkCrossRefGoogle Scholar
  11. 11.
    Brown BH (2003) Electrical impedance tomography (EIT): a review. J Med Eng Technol 27:97–108PubMedCrossRefGoogle Scholar
  12. 12.
    Barber DC (1990) Quantification in impedance imaging. Clin Phys Physiol Meas 11:45–56PubMedCrossRefGoogle Scholar
  13. 13.
    Hahn G, Sipinkov I, Baisch F, Hellige G (1995) Changes in the thoracic impedance distribution under different ventilatory conditions. Physiol Meas 16:161–173CrossRefGoogle Scholar
  14. 14.
    Calzia E, Hahn G, Hellige G (2005) Electrical impedance tomography: looking behind the secrets of regional lung function. Intensive Care Med 31:1474–1475PubMedCrossRefGoogle Scholar
  15. 15.
    Adler A, Arnold JH, Bayford R, Borsic A, Brown B, Dixon P, Faes TJ, Frerichs I, Gagnon H, Gärber Y, Grychtol B, Hahn G, Lionheart WR, Malik A, Patterson RP, Stocks J, Tizzard A, Weiler N, Wolf GK (2009) GREIT: a unified approach to 2D linear EIT reconstruction of lung images. Physiol Meas 30:S35–S55PubMedCrossRefGoogle Scholar
  16. 16.
    Frerichs I, Hahn G, Hellige G (1999) Thoracic electrical impedance tomographic measurements during volume controlled ventilation—effects of tidal volume and positive end-expiratory pressure. IEEE Trans Med Imaging 18:764–773PubMedCrossRefGoogle Scholar
  17. 17.
    Meier T, Leibecke T, Eckmann C, Gosch UW, Grossherr M, Bruch HP, Gehring H, Leonhardt S (2006) Electrical impedance tomography: changes in distribution of pulmonary ventilation during laparoscopic surgery in a porcine model. Langenbecks Arch Surg 391:383–389PubMedCrossRefGoogle Scholar
  18. 18.
    Adler A, Amyot R, Guardo R, Bates JH, Berthiaume Y (1997) Monitoring changes in lung air and liquid volumes with electrical impedance tomography. J Appl Physiol 83:1762–1767PubMedGoogle Scholar
  19. 19.
    Marquis F, Coulombe N, Costa R, Gagnon H, Guardo R, Skrobik Y (2006) Electrical impedance tomography’s correlation to lung volume is not influenced by anthropometric parameters. J Clin Monit Comput 20:201–207PubMedCrossRefGoogle Scholar
  20. 20.
    Hinz J, Hahn G, Neumann P, Sydow M, Mohrenweiser P, Hellige G, Burchardi H (2003) End-expiratory lung impedance change enables bedside monitoring of end-expiratory lung volume change. Intensive Care Med 29:37–43PubMedGoogle Scholar
  21. 21.
    Odenstedt H, Lindgren S, Olegrd C, Erlandsson K, Lethvall S, Aneman A, Stenqvist O, Lundin S (2005) Slow moderate pressure recruitment maneuver minimizes negative circulatory and lung mechanic side effects: evaluation of recruitment maneuvers using electric impedance tomography. Intensive Care Med 31:1706–1714PubMedCrossRefGoogle Scholar
  22. 22.
    Grivans C, Lundin S, Stenqvist O, Lindgren S (2011) Positive end-expiratory pressure-induced changes in end-expiratory lung volume measured by spirometry and electric impedance tomography. Acta Anaesthesiol Scand 55:1068–1077PubMedCrossRefGoogle Scholar
  23. 23.
    Bikker IG, Leonhardt S, Bakker J, Gommers D (2009) Lung volume calculated from electrical impedance tomography in ICU patients at different PEEP levels. Intensive Care Med 35:1362–1367PubMedCrossRefGoogle Scholar
  24. 24.
    Frerichs I, Hinz J, Herrmann P, Weisser G, Hahn G, Quintel M, Hellige G (2002) Regional lung perfusion as determined by electrical impedance tomography in comparison with electron beam CT imaging. IEEE Trans Med Imaging 21:646–652PubMedCrossRefGoogle Scholar
  25. 25.
    Victorino JA, Borges JB, Okamoto VN, Matos GF, Tucci MR, Caramez MP, Tanaka H, Sipmann FS, Santos DC, Barbas CS, Carvalho CR, Amato MB (2004) Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am J Respir Crit Care Med 169:791–800PubMedCrossRefGoogle Scholar
  26. 26.
    Wrigge H, Zinserling J, Muders T, Varelmann D, Gnther U, von der Groeben C, Magnusson A, Hedenstierna G, Putensen C (2008) Electrical impedance tomography compared with thoracic computed tomography during a slow inflation maneuver in experimental models of lung injury. Crit Care Med 36:903–909PubMedCrossRefGoogle Scholar
  27. 27.
    Hinz J, Neumann P, Dudykevych T, Andersson LG, Wrigge H, Burchardi H, Hedenstierna G (2003) Regional ventilation by electrical impedance tomography: a comparison with ventilation scintigraphy in pigs. Chest 124:314–322PubMedCrossRefGoogle Scholar
  28. 28.
    Richard JC, Pouzot C, Gros A, Tourevieille C, Lebars D, Lavenne F, Frerichs I, Gurin C (2009) Electrical impedance tomography compared to positron emission tomography for the measurement of regional lung ventilation: an experimental study. Crit Care 13:R82PubMedCrossRefGoogle Scholar
  29. 29.
    Luepschen H, Meier T, Grossherr M, Leibecke T, Karsten J, Leonhardt S (2007) Protective ventilation using electrical impedance tomography. Physiol Meas 28:247–260CrossRefGoogle Scholar
  30. 30.
    Meier T, Luepschen H, Karsten J, Leibecke T, Grossherr M, Gehring H, Leonhardt S (2008) Assessment of regional lung recruitment and derecruitment during a PEEP trial based on electrical impedance tomography. Intensive Care Med 34:543–550PubMedCrossRefGoogle Scholar
  31. 31.
    Costa EL, Amato MB (2010) Can heterogeneity in ventilation be good? Crit Care 14:134PubMedCrossRefGoogle Scholar
  32. 32.
    Bikker IG, Leonhardt S, Reis Miranda D, Bakker J, Gommers D (2010) Bedside measurement of changes in lung impedance to monitor alveolar ventilation in dependent and non-dependent parts by electrical impedance tomography during a positive end-expiratory pressure trial in mechanically ventilated intensive care unit patients. Crit Care 14:R100PubMedCrossRefGoogle Scholar
  33. 33.
    Kunst PW, Vazquez de Anda G, Bhm SH, Faes TJ, Lachmann B, Postmus PE, de Vries PM (2000) Monitoring of recruitment and derecruitment by electrical impedance tomography in a model of acute lung injury. Crit Care Med 28:3891–3895PubMedCrossRefGoogle Scholar
  34. 34.
    Frerichs I, Hahn G, Golisch W, Kurpitz M, Burchardi H, Hellige G (1998) Monitoring perioperative changes in distribution of pulmonary ventilation by functional electrical impedance tomography. Acta Anaesthesiol Scand 42:721–726PubMedCrossRefGoogle Scholar
  35. 35.
    Muders T, Luepschen H, Zinserling J, Greschus S, Fimmers R, Guenther U, Buchwald M, Grigutsch D, Leonhardt S, Putensen C, Wrigge H (2012) Tidal recruitment assessed by electrical impedance tomography and computed tomography in a porcine model of lung injury. Crit Care Med 40:903–911PubMedCrossRefGoogle Scholar
  36. 36.
    Zhao Z, Moller K, Steinmann D, Frerichs I, Guttmann J (2009) Evaluation of an electrical impedance tomography-based global inhomogeneity index for pulmonary ventilation distribution. Intensive Care Med 35:1900–1906PubMedCrossRefGoogle Scholar
  37. 37.
    Zhao Z, Steinmann D, Frerichs I, Guttmann J, Moller K (2010) PEEP titration guided by ventilation homogeneity: a feasibility study using electrical impedance tomography. Crit Care 14:R8PubMedCrossRefGoogle Scholar
  38. 38.
    Costa EL, Borges JB, Melo A, Suarez-Sipmann F, Toufen C Jr, Bohm SH, Amato MB (2009) Bedside estimation of recruitable alveolar collapse and hyper-distension by electrical impedance tomography. Intensive Care Med 35:1132–1137PubMedCrossRefGoogle Scholar
  39. 39.
    Gómez-Laberge C, Arnold JH, Wolf GK (2012) A unified approach for EIT imaging of regional overdistension and atelectasis in acute lung injury. IEEE Trans Med Imaging 31:834–842PubMedCrossRefGoogle Scholar
  40. 40.
    Lindgren S, Odenstedt H, Erlandsson K, Grivans C, Lundin S, Stenqvist O (2008) Bronchoscopic suctioning may cause lung collapse: a lung model and clinical evaluation. Acta Anaesthesiol Scand 52:209–218PubMedCrossRefGoogle Scholar
  41. 41.
    Lindgren S, Odenstedt H, Olegrd C, Sondergaard S, Lundin S, Stenqvist O (2007) Regional lung derecruitment after endotracheal suction during volume- or pressure-controlled ventilation: a study using electric impedance tomography. Intensive Care Med 33:172–180PubMedCrossRefGoogle Scholar
  42. 42.
    Wolf GK, Grychtol B, Frerichs I, van Genderingen HR, Zurakowski D, Thompson JE, Arnold JH (2007) Regional lung volume changes in children with acute respiratory distress syndrome during a derecruitment maneuver. Crit Care Med 35:1972–1978PubMedCrossRefGoogle Scholar
  43. 43.
    Tingay DG, Copnell B, Grant CA, Dargaville PA, Dunster KR, Schibler A (2010) The effect of endotracheal suction on regional tidal ventilation and end-expiratory lung volume. Intensive Care Med 36:888–896PubMedCrossRefGoogle Scholar
  44. 44.
    van Veenendaal MB, Miedema M, de Jongh FH, van der Lee JH, Frerichs I, van Kaam AH (2009) Effect of closed endotracheal suction in high frequency ventilated premature infants measured with electrical impedance tomography. Intensive Care Med 35:2130–2134PubMedCrossRefGoogle Scholar
  45. 45.
    Steinmann D, Stahl CA, Minner J, Schumann S, Loop T, Kirschbaum A, Priebe HJ, Guttmann J (2008) Electrical impedance tomography to confirm correct placement of double-lumen tube: a feasibility study. Br J Anaesth 101:411–418PubMedCrossRefGoogle Scholar
  46. 46.
    Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M (1987) Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 136:730–736PubMedCrossRefGoogle Scholar
  47. 47.
    Pelosi P, D’Andrea L, Vitale G, Pesenti A, Gattinoni L (1994) Vertical gradient of regional lung inflation in adult respiratory distress syndrome. Am J Respir Crit Care Med 149:8–13PubMedGoogle Scholar
  48. 48.
    Kunst PW, Bohm SH, Vazquez de Anda G, Amato MB, Lachmann B, Postmus PE, de Vries PM (2000) Regional pressure volume curves by electrical impedance tomography in a model of acute lung injury. Crit Care Med 28:178–183PubMedCrossRefGoogle Scholar
  49. 49.
    Hinz J, Moerer O, Neumann P, Dudykevych T, Frerichs I, Hellige G, Quintel M (2006) Regional pulmonary pressure volume curves in mechanically ventilated patients with acute respiratory failure measured by electrical impedance tomography. Acta Anaesthesiol Scand 50:331–339PubMedCrossRefGoogle Scholar
  50. 50.
    Grychtol B, Wolf GK, Arnold JH (2009) Differences in regional pulmonary pressure impedance curves before and after lung injury assessed with a novel algorithm. Physiol Meas 30:137–148CrossRefGoogle Scholar
  51. 51.
    van Genderingen HR, van Vught AJ, Jansen JR (2004) Regional lung volume during high-frequency oscillatory ventilation by electrical impedance tomography. Crit Care Med 32:787–794PubMedCrossRefGoogle Scholar
  52. 52.
    Dargaville PA, Rimensberger PC, Frerichs I (2010) Regional tidal ventilation and compliance during a stepwise vital capacity manoeuvre. Intensive Care Med 36:1953–1961PubMedCrossRefGoogle Scholar
  53. 53.
    Lowhagen K, Lundin S, Stenqvist O (2011) Regional intratidal gas distribution in acute lung injury and acute respiratory distress syndrome—assessed by electric impedance tomography. Minerva Anestesiol 76:1024–1035Google Scholar
  54. 54.
    Costa EL, Chaves CN, Gomes S, Beraldo MA, Volpe MS, Tucci MR, Schettino IA, Bohm SH, Carvalho CR, Tanaka H, Lima RG, Amato MB (2008) Real-time detection of pneumothorax using electrical impedance tomography. Crit Care Med 36:1230–1238PubMedCrossRefGoogle Scholar
  55. 55.
    Preis C, Luepschen H, Leonhardt S, Gommers D (2009) Experimental case report: development of a pneumothorax monitored by electrical impedance tomography. Clin Physiol Funct Imaging 29:159–162PubMedCrossRefGoogle Scholar
  56. 56.
    Kunst PW, Vonk Noordegraaf A, Raaijmakers E, Bakker J, Groeneveld AB, Postmus PE, de Vries PM (1999) Electrical impedance tomography in the assessment of extravascular lung water in noncardiogenic acute respiratory failure. Chest 116:1695–1702PubMedCrossRefGoogle Scholar
  57. 57.
    Arad M, Zlochiver S, Davidson T, Shoenfeld Y, Adunsky A, Abboud S (2009) The detection of pleural effusion using a parametric EIT technique. Physiol Meas 30:421–428PubMedCrossRefGoogle Scholar
  58. 58.
    Lachmann B, Robertson B, Vogel J (1980) In vivo lung lavage as an experimental model of the respiratory distress syndrome. Acta Anaesthesiol Scand 24:231–236PubMedCrossRefGoogle Scholar
  59. 59.
    Kunst PW, de Vries PM, Postmus PE, Bakker J (1999) Evaluation of electrical impedance tomography in the measurement of PEEP-induced changes in lung volume. Chest 115:1102–1106PubMedCrossRefGoogle Scholar
  60. 60.
    Hinz J, Moerer O, Neumann P, Dudykevych T, Hellige G, Quintel M (2005) Effect of positive end-expiratory-pressure on regional ventilation in patients with acute lung injury evaluated by electrical impedance tomography. Eur J Anaesthesiol 22:817–825PubMedCrossRefGoogle Scholar
  61. 61.
    Lowhagen K, Lindgren S, Odenstedt H, Stenqvist O, Lundin S (2011) A new nonradiological method to assess potential lung recruitability: a pilot study in ALI patients. Acta Anaesthesiol Scand 55:165–174PubMedCrossRefGoogle Scholar
  62. 62.
    Wolf GK, Grychtol B, Frerichs I, Zurakowski D, Arnold JH (2010) Regional lung volume changes during high-frequency oscillatory ventilation. Pediatr Crit Care Med 11:610–615PubMedCrossRefGoogle Scholar
  63. 63.
    Vonk Noordegraaf A, Faes TJ, Marcus JT, Janse A, Heethaar RM, Postmus PE, de Vries PM (1996) Improvement of cardiac imaging in electrical impedance tomography by means of a new electrode configuration. Physiol Meas 17:179–188PubMedCrossRefGoogle Scholar
  64. 64.
    Smit HJ, Vonk Noordegraaf A, Marcus JT, Boonstra A, de Vries PM, Postmus PE (2004) Determinants of pulmonary perfusion measured by electrical impedance tomography. Eur J Appl Physiol 92:45–49PubMedCrossRefGoogle Scholar
  65. 65.
    Smit HJ, Vonk-Noordegraaf A, Boonstra A, de Vries PM, Postmus PE (2006) Assessment of the pulmonary volume pulse in idiopathic pulmonary arterial hypertension by means of electrical impedance tomography. Respiration 73:597–602PubMedCrossRefGoogle Scholar
  66. 66.
    Zadehkoochak M, Blott BH, Hames TK, George RF (1992) Pulmonary perfusion and ventricular ejection imaging by frequency domain filtering of EIT images. Clin Phys Meas 13:191–196CrossRefGoogle Scholar
  67. 67.
    Leathard AD, Brown BH, Campbell J, Zhang F, Morice AH, Tayler D (1994) A comparison of ventilatory and cardiac related changes in EIT images of normal human lungs and of lungs with pulmonary emboli. Physiol Meas 15:137–146CrossRefGoogle Scholar
  68. 68.
    Frerichs I, Pulletz S, Elke G, Reifferscheid F, Schadler D, Scholz J, Weiler N (2009) Assessment of changes in distribution of lung perfusion by electrical impedance tomography. Respiration 77:282–291PubMedCrossRefGoogle Scholar
  69. 69.
    Carlisle HR, Armstrong RK, Davis PG, Schibler A, Frerichs I, Tingay DG (2010) Regional distribution of blood volume within the preterm infant thorax during synchronised mechanical ventilation. Intensive Care Med 36:2101–2108PubMedCrossRefGoogle Scholar
  70. 70.
    Eyueboglu B, Brown B (1988) Methods of cardiac gating applied potential tomography. Clin Phys Meas 9:43–48CrossRefGoogle Scholar
  71. 71.
    Vonk Noordegraaf A, Kunst PW, Janse A, Marcus JT, Postmus PE, Faes TJ, de Vries PM (1998) Pulmonary perfusion measured by means of electrical impedance tomography. Physiol Meas 19:263–273PubMedCrossRefGoogle Scholar
  72. 72.
    Smit HJ, Handoko ML, Vonk Noordegraaf A, Faes TJ, Postmus PE, de Vries PM, Boonstra A (2003) Electrical impedance tomography to measure pulmonary perfusion: is the reproducibility high enough for clinical practice? Physiol Meas 24:491–499PubMedCrossRefGoogle Scholar
  73. 73.
    Vonk-Noordegraaf A, van Wolferen SA, Marcus JT, Boonstra A, Postmus PE, Peeters JW, Peacock AJ (2005) Noninvasive assessment and monitoring of pulmonary circulation. Europ Respir J 25:758–766CrossRefGoogle Scholar
  74. 74.
    Fagerberg A, Stenqvist O, Aneman A (2009) Monitoring pulmonary perfusion by electrical impedance tomography: an evaluation in a pig model. Acta Anaesthesiol Scand 53:152–158PubMedCrossRefGoogle Scholar
  75. 75.
    Fagerberg A, Stenqvist O, Aneman A (2009) Electrical impedance tomography applied to assess matching of pulmonary ventilation and perfusion in a porcine experimental model. Crit Care 13:R34PubMedCrossRefGoogle Scholar
  76. 76.
    Luepschen H, Muders T, Pikkemaat R, Meier T, Putensen C, Leonhardt S (2010) Bestimmung der Lungenperfusion mittels Elektrischer Impedanztomographie. Rostock, Germany, pp 5–8 (in German)Google Scholar
  77. 77.
    Borges JB, Suarez-Sipmann F, Bohm SH, Tusman G, Melo A, Maripuu E, Sandstrom M, Park M, Costa EL, Hedenstierna G, Amato M (2012) Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse. J Appl Physiol 112:225–236PubMedCrossRefGoogle Scholar
  78. 78.
    Deibele J, Luepschen H, Leonhardt S (2008) Dynamic separation of pulmonary and cardiac changes in electrical impedance tomography. Physiol Meas 29:1–14CrossRefGoogle Scholar
  79. 79.
    Kerrouche N, McLeod C, Lionheart W (2001) Time series of EIT chest images using singular value decomposition and Fourier transform. Physiol Meas 22:147–157PubMedCrossRefGoogle Scholar
  80. 80.
    Li J (2000) Multifrequente Impedanztomographie zur Darstellung der elektrischen Impedanzverteilung im menschlichen Thorax. Dissertation, University of Stuttgart, Germany (in German)Google Scholar
  81. 81.
    Hahn G, Thiel F, Dudykevych T, Frerichs I, Gersing E, Schroder T, Hartung C, Hellige G (2001) Quantitative evaluation of the performance of different electrical tomography devices. Biomed Tech 46:91–95CrossRefGoogle Scholar
  82. 82.
    Metherall P, Barber DC, Smallwood RH, Brown BH (1996) Three dimensional electrical impedance tomography. Nature 380:509–512PubMedCrossRefGoogle Scholar
  83. 83.
    Bikker IG, Preis C, Egal M, Bakker J, Gommers D (2011) Electrical impedance tomography measured at two thoracic levels can visualize the ventilation distribution changes at the bedside during a decremental positive end-expiratory lung pressure trial. Crit Care 15:R193PubMedCrossRefGoogle Scholar
  84. 84.
    Hahn G, Just A, Dudykevych T, Frerichs I, Hinz J, Quintel M, Hellige G (2006) Imaging pathologic pulmonary air and fluid accumulation by functional and absolute EIT. Physiol Meas 27:187–198CrossRefGoogle Scholar
  85. 85.
    Denai MA, Mahfouf M, Mohamad-Samuri S, Panoutsos G, Brown BH, Mills GH (2010) Absolute electrical impedance tomography (aEIT) guided ventilation therapy in critical care patients: simulations and future trends. IEEE Trans Inf Technol Biomed 14:641–649PubMedCrossRefGoogle Scholar

Copyright information

© Copyright jointly held by Springer and ESICM 2012

Authors and Affiliations

  1. 1.Philips Chair for Medical Information Technology, Helmholtz InstituteRWTH Aachen UniversityAachenGermany
  2. 2.Department of AnaesthesiologyCharite Campus Virchow-Klinikum (CVK)BerlinGermany

Personalised recommendations