Intensive Care Medicine

, Volume 38, Issue 10, pp 1632–1639 | Cite as

Avoiding invasive mechanical ventilation by extracorporeal carbon dioxide removal in patients failing noninvasive ventilation

  • Stefan Kluge
  • Stephan A. Braune
  • Markus Engel
  • Axel Nierhaus
  • Daniel Frings
  • Henning Ebelt
  • Alexander Uhrig
  • Maria Metschke
  • Karl Wegscheider
  • Norbert Suttorp
  • Simone Rousseau
Original

Abstract

Purpose

To evaluate whether extracorporeal carbon dioxide removal by means of a pumpless extracorporeal lung-assist (PECLA) device could be an effective and safe alternative to invasive mechanical ventilation in patients with chronic pulmonary disease and acute hypercapnic ventilatory failure not responding to noninvasive ventilation (NIV).

Methods

In this multicentre, retrospective study, 21 PECLA patients were compared with respect to survival and procedural outcomes to 21 matched controls with conventional invasive mechanical ventilation. Matching criteria were underlying diagnosis, age, Simplified Acute Physiology Score II and pH at ICU admission.

Results

Of the 21 patients treated with PECLA, 19 (90 %) did not require intubation. Median PaCO2 levels and pH in arterial blood prior to PECLA were 84.0 mmHg (54.2–131.0) and 7.28 (7.10–7.41), respectively. Within 24 h, median PaCO2 levels and pH had significantly improved to 52.1 (33.0–70.1; p < 0.001) and 7.44 (7.27–7.56; p < 0.001), respectively. Two major and seven minor bleeding complications related to the device occurred. Further complications were one pseudoaneurysm and one heparin-induced thrombocytopenia type 2. Compared to the matched control group, there was a trend toward a shorter hospital length of stay in the PECLA group (adjusted p = 0.056). There was no group difference in the 28-day (24 % vs. 19 %, adjusted p = 0.845) or 6-month mortality (33 % vs. 33 %).

Conclusions

In this study the use of extracorporeal carbon dioxide removal allowed avoiding intubation and invasive mechanical ventilation in the majority of patients with acute on chronic respiratory failure not responding to NIV. Compared to conventional invasive ventilation, short- and long-term survivals were similar.

Keywords

Endotracheal intubation Mechanical ventilation Extracorporeal Carbon dioxide removal COPD Hypercapnia Acute respiratory failure 

Supplementary material

134_2012_2649_MOESM1_ESM.doc (344 kb)
Supplementary material 1 (DOC 343 kb)

References

  1. 1.
    Esteban A, Anzueto A, Frutos F, Alia I, Brochard L, Stewart TE, Benito S, Epstein SK, Apezteguia C, Nightingale P, Arroliga AC, Tobin MJ (2002) Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA 287:345–355PubMedCrossRefGoogle Scholar
  2. 2.
    Kress JP, Pohlman AS, O’Connor MF, Hall JB (2000) Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med 342:1471–1477PubMedCrossRefGoogle Scholar
  3. 3.
    Melsen WG, Rovers MM, Bonten MJ (2009) Ventilator-associated pneumonia and mortality: a systematic review of observational studies. Crit Care Med 37:2709–2718PubMedCrossRefGoogle Scholar
  4. 4.
    Tremblay LN, Slutsky AS (2006) Ventilator-induced lung injury: from the bench to the bedside. Intensive Care Med 32:24–33PubMedCrossRefGoogle Scholar
  5. 5.
    Jackson DL, Proudfoot CW, Cann KF, Walsh T (2010) A systematic review of the impact of sedation practice in the ICU on resource use, costs and patient safety. Crit Care 14:R59PubMedCrossRefGoogle Scholar
  6. 6.
    Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The acute respiratory distress syndrome network ((2000)) N Engl J Med 342:1301–1308CrossRefGoogle Scholar
  7. 7.
    Ram FS, Picot J, Lightowler J, Wedzicha JA (2004) Non-invasive positive pressure ventilation for treatment of respiratory failure due to exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst RevCD004104Google Scholar
  8. 8.
    Funk GC (2012) [Non-invasive mechanical ventilation in COPD.]. Med Klin Intensivmed NotfmedGoogle Scholar
  9. 9.
    Nevins ML, Epstein SK (2001) Predictors of outcome for patients with COPD requiring invasive mechanical ventilation. Chest 119:1840–1849PubMedCrossRefGoogle Scholar
  10. 10.
    Texereau J, Jamal D, Choukroun G, Burgel PR, Diehl JL, Rabbat A, Loirat P, Parrot A, Duguet A, Coste J, Dusser D, Hubert D, Mira JP (2006) Determinants of mortality for adults with cystic fibrosis admitted in Intensive Care Unit: a multicenter study. Respir Res 7:14PubMedCrossRefGoogle Scholar
  11. 11.
    Hill JD, O’Brien TG, Murray JJ, Dontigny L, Bramson ML, Osborn JJ, Gerbode F (1972) Prolonged extracorporeal oxygenation for acute post-traumatic respiratory failure (shock-lung syndrome). Use of the bramson membrane lung. N Engl J Med 286:629–634PubMedCrossRefGoogle Scholar
  12. 12.
    MacLaren G, Combes A, Bartlett RH (2012) Contemporary extracorporeal membrane oxygenation for adult respiratory failure: life support in the new era. Intensive Care Med 38:210–220PubMedCrossRefGoogle Scholar
  13. 13.
    Reng M, Philipp A, Kaiser M, Pfeifer M, Gruene S, Schoelmerich J (2000) Pumpless extracorporeal lung assist and adult respiratory distress syndrome. Lancet 356:219–220PubMedCrossRefGoogle Scholar
  14. 14.
    Bein T, Weber F, Philipp A, Prasser C, Pfeifer M, Schmid FX, Butz B, Birnbaum D, Taeger K, Schlitt HJ (2006) A new pumpless extracorporeal interventional lung assist in critical hypoxemia/hypercapnia. Crit Care Med 34:1372–1377PubMedCrossRefGoogle Scholar
  15. 15.
    Terragni PP, Del SL, Mascia L, Urbino R, Martin EL, Birocco A, Faggiano C, Quintel M, Gattinoni L, Ranieri VM (2009) Tidal volume lower than 6 ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal. Anesthesiology 111:826–835PubMedCrossRefGoogle Scholar
  16. 16.
    Nierhaus A, Frings D, Braune S, Baumann H, Schneider C, Wittenburg B, Kluge S (2011) Interventional lung assist enables lung protective mechanical ventilation in acute respiratory distress syndrome. Minerva Anestesiol 77:797–801PubMedGoogle Scholar
  17. 17.
    Global Initiative for Chronic Obstructive Lung Disease (2010) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease http://www.goldcopd.com
  18. 18.
    Yankaskas JR, Marshall BC, Sufian B, Simon RH, Rodman D (2004) Cystic fibrosis adult care: consensus conference report. Chest 125:1S–39SPubMedCrossRefGoogle Scholar
  19. 19.
    Moscatelli A, Ottonello G, Nahum L, Lampugnani E, Puncuh F, Simonini A, Tumolo M, Tuo P (2010) Noninvasive ventilation and low-flow veno-venous extracorporeal carbon dioxide removal as a bridge to lung transplantation in a child with refractory hypercapnic respiratory failure due to bronchiolitis obliterans. Pediatr Crit Care Med 11:e8–12PubMedCrossRefGoogle Scholar
  20. 20.
    Ricci D, Boffini M, Del SL, El QS, Comoglio C, Ribezzo M, Bonato R, Ranieri VM, Rinaldi M (2010) The use of CO2 removal devices in patients awaiting lung transplantation: an initial experience. Transplant Proc 42:1255–1258PubMedCrossRefGoogle Scholar
  21. 21.
    Crotti S, Lissoni A, Tubiolo D, Azzari S, Tarsia P, Caspani L, Gattinoni L (2012) Artificial lung as an alternative to mechanical ventilation in COPD exacerbation. Eur Respir J 39:212–215PubMedCrossRefGoogle Scholar
  22. 22.
    Fuehner T, Kuehn C, Hadem J, Wiesner O, Gottlieb J, Tudorache I, Olsson KM, Greer M, Sommer W, Welte T, Haverich A, Hoeper MM, Warnecke G (2012) Extracorporeal membrane oxygenation in awake patients as bridge to lung transplantation. Am J Respir Crit Care MedGoogle Scholar
  23. 23.
    Terragni P, Maiolo G, Ranieri VM (2012) Role and potentials of low-flow CO(2) removal system in mechanical ventilation. Curr Opin Crit Care 18:93–98PubMedCrossRefGoogle Scholar
  24. 24.
    Hadjiliadis D, Steele MP, Govert JA, Davis RD, Palmer SM (2004) Outcome of lung transplant patients admitted to the medical ICU. Chest 125:1040–1045PubMedCrossRefGoogle Scholar
  25. 25.
    Kluge S, Baumann HJ, Nierhaus A, Kroger N, Meyer A, Kreymann G (2008) Safety of percutaneous dilational tracheostomy in hematopoietic stem cell transplantation recipients requiring long-term mechanical ventilation. J Crit Care 23:394–398PubMedCrossRefGoogle Scholar
  26. 26.
    Kolobow T, Gattinoni L, Tomlinson TA, Pierce JE (1977) Control of breathing using an extracorporeal membrane lung. Anesthesiology 46:138–141PubMedCrossRefGoogle Scholar
  27. 27.
    Kolobow T, Gattinoni L, Tomlinson T, Pierce JE (1978) An alternative to breathing. J Thorac Cardiovasc Surg 75:261–266PubMedGoogle Scholar
  28. 28.
    Zimmermann M, Bein T, Arlt M, Philipp A, Rupprecht L, Mueller T, Lubnow M, Graf BM, Schlitt HJ (2009) Pumpless extracorporeal interventional lung assist in patients with acute respiratory distress syndrome: a prospective pilot study. Crit Care 13:R10PubMedCrossRefGoogle Scholar
  29. 29.
    Lassen HC (1953) A preliminary report on the 1952 epidemic of poliomyelitis in copenhagen with special reference to the treatment of acute respiratory insufficiency. Lancet 1:37–41PubMedCrossRefGoogle Scholar
  30. 30.
    Pesenti A, Patroniti N, Fumagalli R (2010) Carbon dioxide dialysis will save the lung. Crit Care Med 38:S549–S554PubMedCrossRefGoogle Scholar
  31. 31.
    Del SL, Ranieri VM (2010) We do not need mechanical ventilation any more. Crit Care Med 38:S555–S558CrossRefGoogle Scholar
  32. 32.
    Stewart NI, Jagelman TA, Webster NR (2011) Emerging modes of ventilation in the intensive care unit. Br J AnaesthGoogle Scholar

Copyright information

© Copyright jointly held by Springer and ESICM 2012

Authors and Affiliations

  • Stefan Kluge
    • 1
  • Stephan A. Braune
    • 1
  • Markus Engel
    • 2
  • Axel Nierhaus
    • 1
  • Daniel Frings
    • 1
  • Henning Ebelt
    • 3
  • Alexander Uhrig
    • 4
  • Maria Metschke
    • 1
  • Karl Wegscheider
    • 5
  • Norbert Suttorp
    • 4
  • Simone Rousseau
    • 4
  1. 1.Department of Intensive Care MedicineUniversity Medical Centre Hamburg-EppendorfHamburgGermany
  2. 2.Department of Cardiology and Intensive CareKlinikum BogenhausenMunichGermany
  3. 3.Department of Medicine IIIUniversity of Halle (Saale)HalleGermany
  4. 4.Department of Internal Medicine, Infectious Diseases and Respiratory MedicineCharité-Universitätsmedizin BerlinBerlinGermany
  5. 5.Department of Medical Biometry and EpidemiologyUniversity Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations