Intensive Care Medicine

, Volume 38, Issue 3, pp 395–403

ECMO criteria for influenza A (H1N1)-associated ARDS: role of transpulmonary pressure

  • Salvatore Grasso
  • Pierpaolo Terragni
  • Alberto Birocco
  • Rosario Urbino
  • Lorenzo Del Sorbo
  • Claudia Filippini
  • Luciana Mascia
  • Antonio Pesenti
  • Alberto Zangrillo
  • Luciano Gattinoni
  • V. Marco Ranieri



To assess whether partitioning the elastance of the respiratory system (ERS) between lung (EL) and chest wall (ECW) elastance in order to target values of end-inspiratory transpulmonary pressure (PPLATL) close to its upper physiological limit (25 cmH2O) may optimize oxygenation allowing conventional treatment in patients with influenza A (H1N1)-associated ARDS referred for extracorporeal membrane oxygenation (ECMO).


Prospective data collection of patients with influenza A (H1N1)-associated ARDS referred for ECMO (October 2009–January 2010). Esophageal pressure was used to (a) partition respiratory mechanics between lung and chest wall, (b) titrate positive end-expiratory pressure (PEEP) to target the upper physiological limit of PPLATL (25 cmH2O).


Fourteen patients were referred for ECMO. In seven patients PPLATL was 27.2 ± 1.2 cmH2O; all these patients underwent ECMO. In the other seven patients, PPLATL was 16.6 ± 2.9 cmH2O. Raising PEEP (from 17.9 ± 1.2 to 22.3 ± 1.4 cmH2O, P = 0.0001) to approach the upper physiological limit of transpulmonary pressure (PPLATL = 25.3 ± 1.7 cm H2O) improved oxygenation index (from 37.4 ± 3.7 to 16.5 ± 1.4, P = 0.0001) allowing patients to be treated with conventional ventilation.


Abnormalities of chest wall mechanics may be present in some patients with influenza A (H1N1)-associated ARDS. These abnormalities may not be inferred from measurements of end-inspiratory plateau pressure of the respiratory system (PPLATRS). In these patients, titrating PEEP to PPLATRS may overestimate the incidence of hypoxemia refractory to conventional ventilation leading to inappropriate use of ECMO.


ARDS Influenza A (H1N1) Transpulmonary pressure Extracorporeal membrane oxygenation 

Supplementary material

134_2012_2490_MOESM1_ESM.doc (173 kb)
Supplementary material 1 (DOC 173 kb)


  1. 1.
    Davies A, Jones D, Bailey M, Beca J, Bellomo R, Blackwell N, Forrest P, Gattas D, Granger E, Herkes R, Jackson A, McGuinness S, Nair P, Pellegrino V, Pettila V, Plunkett B, Pye R, Torzillo P, Webb S, Wilson M, Ziegenfuss M (2009) Extracorporeal membrane oxygenation for 2009 influenza A(H1N1) acute respiratory distress syndrome. JAMA 302:1888–1895PubMedGoogle Scholar
  2. 2.
    Roch A, Lepaul-Ercole R, Grisoli D, Bessereau J, Brissy O, Castanier M, Dizier S, Forel JM, Guervilly C, Gariboldi V, Collart F, Michelet P, Perrin G, Charrel R, Papazian L (2010) Extracorporeal membrane oxygenation for severe influenza A (H1N1) acute respiratory distress syndrome: a prospective observational comparative study. Intensive Care Med 36:1899–1905PubMedGoogle Scholar
  3. 3.
    Chan KK, Lee KL, Lam PK, Law KI, Joynt GM, Yan WW (2010) Hong Kong’s experience on the use of extracorporeal membrane oxygenation for the treatment of influenza A (H1N1). Hong Kong Med J 16:447–454PubMedGoogle Scholar
  4. 4.
    Freed DH, Henzler D, White CW, Fowler R, Zarychanski R, Hutchison J, Arora RC, Manji RA, Legare JF, Drews T, Veroukis S, Kesselman M, Guerguerian AM, Kumar A (2010) Extracorporeal lung support for patients who had severe respiratory failure secondary to influenza A (H1N1) 2009 infection in Canada. Can J Anaesth 57:240–247PubMedGoogle Scholar
  5. 5.
    Holzgraefe B, Broome M, Kalzen H, Konrad D, Palmer K, Frenckner B (2010) Extracorporeal membrane oxygenation for pandemic H1N1 2009 respiratory failure. Minerva Anestesiol 76:1043–1051PubMedGoogle Scholar
  6. 6.
    Noah MA, Peek GJ, Finney SJ, Griffiths MJ, Harrison DA, Grieve R, Sadique MZ, Sekhon JS, McAuley DF, Firmin RK, Harvey C, Cordingley JJ, Price S, Vuylsteke A, Jenkins DP, Noble DW, Bloomfield R, Walsh TS, Perkins GD, Menon D, Taylor BL, Rowan KM (2011) Referral to an extracorporeal membrane oxygenation center and mortality among patients with severe 2009 influenza A(H1N1). JAMA 306:1659–1668PubMedGoogle Scholar
  7. 7.
    Dalton HJ, MacLaren G (2010) Extracorporeal membrane oxygenation in pandemic flu: insufficient evidence or worth the effort? Crit Care Med 38:1484–1485PubMedGoogle Scholar
  8. 8.
    Hubmayr RD, Farmer JC (2010) Should we “rescue” patients with 2009 influenza A(H1N1) and lung injury from conventional mechanical ventilation? Chest 137:745–747PubMedGoogle Scholar
  9. 9.
    Morris AH, Hirshberg E, Miller RR 3rd, Statler KD, Hite RD (2010) Counterpoint: efficacy of extracorporeal membrane oxygenation in 2009 influenza A(H1N1): sufficient evidence? Chest 138:778–781 (Discussion 782–774)PubMedGoogle Scholar
  10. 10.
    Park PK, Dalton HJ, Bartlett RH (2010) Point: efficacy of extracorporeal membrane oxygenation in 2009 influenza A(H1N1): sufficient evidence? Chest 138:776–778PubMedGoogle Scholar
  11. 11.
    Mitchell MD, Mikkelsen ME, Umscheid CA, Lee I, Fuchs BD, Halpern SD (2010) A systematic review to inform institutional decisions about the use of extracorporeal membrane oxygenation during the H1N1 influenza pandemic. Crit Care Med 38:1398–1404PubMedGoogle Scholar
  12. 12.
    Hubmayr RD, Rodarte JR, Walters BJ, Tonelli FM (1987) Regional ventilation during spontaneous breathing and mechanical ventilation in dogs. J Appl Physiol 63:2467–2475PubMedGoogle Scholar
  13. 13.
    Gattinoni L, Pelosi P, Suter PM, Pedoto A, Vercesi P, Lissoni A (1998) Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes? Am J Respir Crit Care Med 158:3–11PubMedGoogle Scholar
  14. 14.
    Grasso S, Mascia L, Del Turco M, Malacarne P, Giunta F, Brochard L, Slutsky AS, Marco Ranieri V (2002) Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilatory strategy. Anesthesiology 96:795–802PubMedGoogle Scholar
  15. 15.
    Ranieri VM, Brienza N, Santostasi S, Puntillo F, Mascia L, Vitale N, Giuliani R, Memeo V, Bruno F, Fiore T, Brienza A, Slutsky AS (1997) Impairment of lung and chest wall mechanics in patients with acute respiratory distress syndrome: role of abdominal distension. Am J Respir Crit Care Med 156:1082–1091PubMedGoogle Scholar
  16. 16.
    Gattinoni L, Chiumello D, Carlesso E, Valenza F (2004) Bench-to-bedside review: chest wall elastance in acute lung injury/acute respiratory distress syndrome patients. Crit Care 8:350–355PubMedGoogle Scholar
  17. 17.
    Colebatch HJ, Greaves IA, Ng CK (1979) Exponential analysis of elastic recoil and aging in healthy males and females. J Appl Physiol 47:683–691PubMedGoogle Scholar
  18. 18.
    Patroniti N, Zangrillo A, Pappalardo F, Peris A, Cianchi G, Braschi A, Iotti GA, Arcadipane A, Panarello G, Ranieri VM, Terragni P, Antonelli M, Gattinoni L, Oleari F, Pesenti A (2011) The Italian ECMO network experience during the 2009 influenza A(H1N1) pandemic: preparation for severe respiratory emergency outbreaks. Intensive Care Med 37:1447–1457PubMedGoogle Scholar
  19. 19.
    The Acute Respiratory Distress Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 342:1301–1308Google Scholar
  20. 20.
    Talmor D, Sarge T, Malhotra A, O’Donnell CR, Ritz R, Lisbon A, Novack V, Loring SH (2008) Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 359:2095–2104PubMedGoogle Scholar
  21. 21.
    Ranieri VM, Giuliani R, Fiore T, Dambrosio M, Milic-Emili J (1994) Volume-pressure curve of the respiratory system predicts effects of PEEP in ARDS: “occlusion” versus “constant flow” technique. Am J Respir Crit Care Med 149:19–27PubMedGoogle Scholar
  22. 22.
    Ranieri VM, Zhang H, Mascia L, Aubin M, Lin CY, Mullen JB, Grasso S, Binnie M, Volgyesi GA, Eng P, Slutsky AS (2000) Pressure-time curve predicts minimally injurious ventilatory strategy in an isolated rat lung model. Anesthesiology 93:1320–1328PubMedGoogle Scholar
  23. 23.
    Grasso S, Stripoli T, De Michele M, Bruno F, Moschetta M, Angelelli G, Munno I, Ruggiero V, Anaclerio R, Cafarelli A, Driessen B, Fiore T (2007) ARDSnet ventilatory protocol and alveolar hyperinflation: role of positive end-expiratory pressure. Am J Respir Crit Care Med 176:761–767PubMedGoogle Scholar
  24. 24.
    Grasso S, Terragni P, Mascia L, Fanelli V, Quintel M, Herrmann P, Hedenstierna G, Slutsky AS, Ranieri VM (2004) Airway pressure-time curve profile (stress index) detects tidal recruitment/hyperinflation in experimental acute lung injury. Crit Care Med 32:1018–1027PubMedGoogle Scholar
  25. 25.
    Terragni PP, Del Sorbo L, Mascia L, Urbino R, Martin EL, Birocco A, Faggiano C, Quintel M, Gattinoni L, Ranieri VM (2009) Tidal volume lower than 6 ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal. Anesthesiology 111:826–835PubMedGoogle Scholar
  26. 26.
    Murray JF, Matthay MA, Luce JM, Flick MR (1988) An expanded definition of the adult respiratory distress syndrome. Am Rev Respir Dis 138:720–723PubMedGoogle Scholar
  27. 27.
    Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, Schoenfeld D, Thompson BT (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351:327–336PubMedGoogle Scholar
  28. 28.
    Mercat A, Richard JC, Vielle B, Jaber S, Osman D, Diehl JL, Lefrant JY, Prat G, Richecoeur J, Nieszkowska A, Gervais C, Baudot J, Bouadma L, Brochard L (2008) Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299:646–655PubMedGoogle Scholar
  29. 29.
    Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Cooper DJ, Davies AR, Hand LE, Zhou Q, Thabane L, Austin P, Lapinsky S, Baxter A, Russell J, Skrobik Y, Ronco JJ, Stewart TE (2008) Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299:637–645PubMedGoogle Scholar
  30. 30.
    Briel M, Meade M, Mercat A, Brower RG, Talmor D, Walter SD, Slutsky AS, Pullenayegum E, Zhou Q, Cook D, Brochard L, Richard JC, Lamontagne F, Bhatnagar N, Stewart TE, Guyatt G (2010) Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 303:865–873PubMedGoogle Scholar
  31. 31.
    Brander L, Ranieri VM, Slutsky AS (2006) Esophageal and transpulmonary pressure help optimize mechanical ventilation in patients with acute lung injury. Crit Care Med 34:1556–1558PubMedGoogle Scholar
  32. 32.
    Fezeu L, Julia C, Henegar A, Bitu J, Hu FB, Grobbee DE, Kengne AP, Hercberg S, Czernichow S (2011) Obesity is associated with higher risk of intensive care unit admission and death in influenza A (H1N1) patients: a systematic review and meta-analysis. Obes Rev 12:653–659PubMedGoogle Scholar
  33. 33.
    Salome CM, King GG, Berend N (2010) Physiology of obesity and effects on lung function. J Appl Physiol 108:206–211PubMedGoogle Scholar
  34. 34.
    Mergoni M, Martelli A, Volpi A, Primavera S, Zuccoli P, Rossi A (1997) Impact of positive end-expiratory pressure on chest wall and lung pressure-volume curve in acute respiratory failure. Am J Respir Crit Care Med 156:846–854PubMedGoogle Scholar
  35. 35.
    Fan E, Wilcox ME, Brower RG, Stewart TE, Mehta S, Lapinsky SE, Meade MO, Ferguson ND (2008) Recruitment maneuvers for acute lung injury: a systematic review. Am J Respir Crit Care Med 178:1156–1163PubMedGoogle Scholar
  36. 36.
    Terragni PP, Rosboch G, Tealdi A, Corno E, Menaldo E, Davini O, Gandini G, Herrmann P, Mascia L, Quintel M, Slutsky AS, Gattinoni L, Ranieri VM (2007) Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 175:160–166PubMedGoogle Scholar
  37. 37.
    Matamis D, Lemaire F, Harf A, Teisseire B, Brun-Buisson C (1984) Redistribution of pulmonary blood flow induced by positive end-expiratory pressure and dopamine infusion in acute respiratory failure. Am Rev Respir Dis 129:39–44PubMedGoogle Scholar
  38. 38.
    Ranieri VM, Giuliani R, Cinnella G, Pesce C, Brienza N, Ippolito EL, Pomo V, Fiore T, Gottfried SB, Brienza A (1993) Physiologic effects of positive end-expiratory pressure in patients with chronic obstructive pulmonary disease during acute ventilatory failure and controlled mechanical ventilation. Am Rev Respir Dis 147:5–13PubMedGoogle Scholar
  39. 39.
    Maggiore SM, Jonson B, Richard JC, Jaber S, Lemaire F, Brochard L (2001) Alveolar derecruitment at decremental positive end-expiratory pressure levels in acute lung injury: comparison with the lower inflection point, oxygenation, and compliance. Am J Respir Crit Care Med 164:795–801PubMedGoogle Scholar
  40. 40.
    Jonson B, Richard JC, Straus C, Mancebo J, Lemaire F, Brochard L (1999) Pressure-volume curves and compliance in acute lung injury: evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med 159:1172–1178PubMedGoogle Scholar
  41. 41.
    Richard JC, Brochard L, Vandelet P, Breton L, Maggiore SM, Jonson B, Clabault K, Leroy J, Bonmarchand G (2003) Respective effects of end-expiratory and end-inspiratory pressures on alveolar recruitment in acute lung injury. Crit Care Med 31:89–92PubMedGoogle Scholar
  42. 42.
    Grasso S, Stripoli T, Sacchi M, Trerotoli P, Staffieri F, Franchini D, De Monte V, Valentini V, Pugliese P, Crovace A, Driessen B, Fiore T (2009) Inhomogeneity of lung parenchyma during the open lung strategy: a computed tomography scan study. Am J Respir Crit Care Med 180:415–423PubMedGoogle Scholar
  43. 43.
    Hess DR, Bigatello LM (2008) The chest wall in acute lung injury/acute respiratory distress syndrome. Curr Opin Crit care 14:94–102PubMedGoogle Scholar
  44. 44.
    Frank NR, Mead J, Ferris BG Jr (1957) The mechanical behavior of the lungs in healthy elderly persons. J Clin Investig 36:1680–1687PubMedGoogle Scholar
  45. 45.
    Milic-Emili J, Mead J, Turner JM, Glauser EM (1964) Improved technique for estimating pleural pressure from esophageal balloons. J Appl Physiol 19:207–211PubMedGoogle Scholar
  46. 46.
    Rehder K, Abboud N, Rodarte JR, Hyatt RE (1975) Positive airway pressure and vertical transpulmonary pressure gradient in man. J Appl Physiol 38:896–899PubMedGoogle Scholar
  47. 47.
    Hubmayr RD (2010) Is there a place for esophageal manometry in the care of patients with injured lungs? J Appl Physiol 108:481–482PubMedGoogle Scholar
  48. 48.
    Suarez-Sipmann F, Bohm SH, Tusman G, Pesch T, Thamm O, Reissmann H, Reske A, Magnusson A, Hedenstierna G (2007) Use of dynamic compliance for open lung positive end-expiratory pressure titration in an experimental study. Crit Care Med 35:214–221PubMedGoogle Scholar
  49. 49.
    Hodgson CL, Tuxen DV, Davies AR, Bailey MJ, Higgins AM, Holland AE, Keating JL, Pilcher D, Westbrook AJ, Cooper DJ, Nichol A (2011) A randomised controlled trial of an open lung strategy with staircase recruitment, titrated PEEP and targeted low airway pressures in patients with acute respiratory distress syndrome. Crit Care 15:R133PubMedGoogle Scholar
  50. 50.
    Borges JB, Okamoto VN, Matos GF, Caramez MP, Arantes PR, Barros F, Souza CE, Victorino JA, Kacmarek RM, Barbas CS, Carvalho CR, Amato MB (2006) Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med 174:268–278PubMedGoogle Scholar
  51. 51.
    Hager DN, Krishnan JA, Hayden DL, Brower RG (2005) Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med 172:1241–1245PubMedGoogle Scholar
  52. 52.
    Norfolk SG, Hollingsworth CL, Wolfe CR, Govert JA, Que LG, Cheifetz IM, Hollingsworth JW (2010) Rescue therapy in adult and pediatric patients with pH1N1 influenza infection: a tertiary center intensive care unit experience from April to October 2009. Crit Care Med 38:2103–2107PubMedGoogle Scholar
  53. 53.
    Peek GJ, Mugford M, Tiruvoipati R, Wilson A, Allen E, Thalanany MM, Hibbert CL, Truesdale A, Clemens F, Cooper N, Firmin RK, Elbourne D (2009) Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 374:1351–1363PubMedGoogle Scholar
  54. 54.
    Extracorporeal Life Support Organization (ELSO) (2009) ELSO guidelines. Available via Accessed 13 Apr 2011

Copyright information

© Copyright jointly held by Springer and ESICM 2012

Authors and Affiliations

  • Salvatore Grasso
    • 1
  • Pierpaolo Terragni
    • 2
  • Alberto Birocco
    • 2
  • Rosario Urbino
    • 2
  • Lorenzo Del Sorbo
    • 2
  • Claudia Filippini
    • 2
  • Luciana Mascia
    • 2
  • Antonio Pesenti
    • 3
  • Alberto Zangrillo
    • 4
  • Luciano Gattinoni
    • 5
  • V. Marco Ranieri
    • 2
  1. 1.Dipartimento dell’Emergenza e Trapianti d’Organo, Sezione di Anestesiologia e RianimazioneUniversità degli Studi Aldo MoroBariItaly
  2. 2.Dipartimento di Anestesia e di Medicina degli Stati CriticiOspedale S.Giovanni Battista-Molinette Università di TorinoTurinItaly
  3. 3.Dipartimento di Medicina SperimentaleUniversità Milano-Bicocca, Ospedale San GerardoMonzaItaly
  4. 4.Dipartimento di Anestesia Cardiaca e Terapia IntensivaUniversità Vita-Salute San RaffaeleMilanItaly
  5. 5.Dipartimento di AnestesiologiaFondazione Istituto Di Ricovero e Cura a Carattere Scientifico – Ospedale Maggiore Policlinico, Università degli Studi di MilanoMilanItaly

Personalised recommendations