Intensive Care Medicine

, Volume 38, Issue 4, pp 694–701

Time course of metabolic activity and cellular infiltration in a murine model of acid-induced lung injury

  • Vanessa Zambelli
  • Giuseppe Di Grigoli
  • Margherita Scanziani
  • Silvia Valtorta
  • Maria Amigoni
  • Sara Belloli
  • Cristina Messa
  • Antonio Pesenti
  • Ferruccio Fazio
  • Giacomo Bellani
  • Rosa Maria Moresco
Experimental

Abstract

Purpose

This study investigates whether positron emission tomography (PET) can be used to monitor the inflammatory response and its correlation with the later fibroproliferative phase in an experimental model of acute lung injury.

Methods

Hydrochloric acid (0.1 N, pH 1, 1.5 ml/kg) was instilled into the right bronchus of mice. A group of mice underwent a micro-computed tomography (CT) scan 1 h after lung injury and a series of 2-[18F]fluorine-2-deoxy-d-glucose (FDG)-PET scans (6, 24 and 48 h and 7 days after surgery). After 21 days respiratory static compliance was assessed and lung tissue was collected in order to measure the hydroxy (OH)-proline content. Other groups of mice underwent micro-CT and micro-PET scans at the same time points, and then were immediately killed to assess arterial blood gases and histology.

Results

Histological analysis showed the recruitment of neutrophils and macrophages into the damaged lung, reaching the peak at 24 and 48 h, respectively. The time course of the [18F]FDG signal, used as a marker of inflammation, correlated with that of recruited inflammatory cells. In mice killed 21 days after the surgery, a correlation was found between reduced respiratory static compliance and high PET signal 7 days after lung injury. The PET signal also correlated with the OH-proline content.

Conclusions

This study demonstrated that PET imaging is a valid means of tracking the inflammatory response, also in longitudinal studies. Moreover, a correlation was found between persistence of the inflammatory response and fibrotic evolution of the injury.

Keywords

ALI PET [18F]FDG Neutrophils Macrophages 

Supplementary material

134_2011_2456_MOESM1_ESM.doc (2.2 mb)
Supplementary material 1 (DOC 2275 kb)

References

  1. 1.
    Steinberg KP, Hudson LD (2000) Acute lung injury and acute respiratory distress syndrome. The clinical syndrome. Clin Chest Med 21:401–417PubMedCrossRefGoogle Scholar
  2. 2.
    Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, Stern EJ, Hudson LD (2005) Incidence and outcomes of acute lung injury. N Engl J Med 353:1685–1693PubMedCrossRefGoogle Scholar
  3. 3.
    Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342:1334–1349PubMedCrossRefGoogle Scholar
  4. 4.
    Bachofen M, Weibel ER (1982) Structural alterations of lung parenchyma in the adult respiratory distress syndrome. Clin Chest Med 3:35–56PubMedGoogle Scholar
  5. 5.
    Amigoni M, Bellani G, Scanziani M, Masson S, Bertoli E, Radaelli E, Patroniti N, Di Lelio A, Pesenti A, Latini R (2008) Lung injury and recovery in a murine model of unilateral acid aspiration. Anesthesiology 108:1037–1046PubMedCrossRefGoogle Scholar
  6. 6.
    Abraham E (2003) Neutrophils and acute lung injury. Crit Care Med 31(Suppl 4):S195–S199PubMedCrossRefGoogle Scholar
  7. 7.
    Wittkowski H, Sturrock A, van Zoelen MA et al (2007) Neutrophil-derived S100A12 in acute lung injury and respiratory distress syndrome. Crit Care Med 35:1369–1375PubMedCrossRefGoogle Scholar
  8. 8.
    Pittet JF, Mackersie RC, Martin TR, Matthay MA (1997) Biological markers of acute lung injury: prognostic and pathogenetic significance. Am J Respir Crit Care Med 155:1187–1205PubMedGoogle Scholar
  9. 9.
    Reynolds HY (2005) Lung inflammation and fibrosis: an alveolar macrophage-centered perspective from the 1970 s to 1980 s. Am J Resp Crit Care Med 171:98–102PubMedCrossRefGoogle Scholar
  10. 10.
    Lee WL, Downey GP (2001) Neutrophil activation and acute lung injury. Curr Opin Crit Care 7:1–7PubMedCrossRefGoogle Scholar
  11. 11.
    Dos Santos CC (2008) Advances in mechanisms of repair and remodelling in acute lung injury. Intensive Care Med 34:619–630PubMedCrossRefGoogle Scholar
  12. 12.
    Pawlik MT, Schubert T, Hopf S, Lubnow M, Gruber M, Selig C, Taeger K, Ittner KP (2009) The effects of fenoterol inhalation after acid aspiration-induced lung injury. Anesth Analg 109:143–150PubMedCrossRefGoogle Scholar
  13. 13.
    Trabold B, Pawlik M, Nietsch R, Bitzinger DI, Gruber M, Ittner KP, Lubnow M (2009) Bosentan reduces oxidative burst in acid aspiration-induced lung injury in rats. Injury 40:946–949PubMedCrossRefGoogle Scholar
  14. 14.
    Jian MY, Koizumi T, Tsushima K, Yokoyama T, Kubo K, Baba A (2010) Exogenous surfactant instillation attenuates inflammatory response to acid-induced lung injury in rat. Pulm Pharmacol Ther 23:43–47PubMedCrossRefGoogle Scholar
  15. 15.
    Boost KA, Hoegl S, Hofstetter C, Flondor M, Stegewerth K, Platacis I, Pfeilschifter J, Muhl H, Zwissler B (2007) Targeting caspase-1 by inhalation-therapy: effects of Ac-YVAD-CHO on IL-1 beta, IL-18 and downstream proinflammatory parameters as detected in rat endotoxaemia. Intensive Care Med 33:963–971CrossRefGoogle Scholar
  16. 16.
    Bueltmann M, Kong X, Mertens M, Yin N, Yin J, Liu Z, Koster A, Kuppe H, Kuebler WM (2009) Inhaled milrinone attenuates experimental acute lung injury. Intensive Care Med 35:171–178PubMedCrossRefGoogle Scholar
  17. 17.
    Chen DL, Bedient TJ, Kozlowski J, Rosenbluth DB, Isakow W, Ferkol TW, Thomas B, Mintun MA, Schuster DP, Walter MJ (2009) [18F]fluorodeoxyglucose positron emission tomography for lung anti-inflammatory response evaluation. Am J Resp Crit Care Med 180:533–539PubMedCrossRefGoogle Scholar
  18. 18.
    Bellani G, Messa C, Guerra L, Spagnolli E, Foti G, Patroniti N, Fumagalli R, Musch G, Fazio F, Pesenti A (2009) Lungs of patients with acute respiratory distress syndrome show diffuse inflammation in normally aerated regions: A [18F]-fluoro-2-deoxy-d-glucose PET/CT study. Crit Care Med 37:2216–2222PubMedCrossRefGoogle Scholar
  19. 19.
    Rodrigues RS, Miller PR, Bozza FA, Marchiori E, Zimmerman GA, Hoffman JM, Morton KA (2008) FDG-PET in patients at risk for acute respiratory distress syndrome: a preliminary report. Intensive Care Med 34:2273–2278PubMedCrossRefGoogle Scholar
  20. 20.
    Bellani G, Guerra L, Musch G, Zanella A, Patroniti N, Mauri T, Messa C, Pesenti A (2011) Lung regional metabolic activity and gas volume changes induced by tidal ventilation in patients with acute lung injury. Am J Respir Crit Care Med 183:1193–1199Google Scholar
  21. 21.
    Musch G, Venegas JG, Bellani G, Winkler T, Schroeder T, Petersen B, Harris RS, Melo MF (2007) Regional gas exchange and cellular metabolic activity in ventilator-induced lung injury. Anesthesiology 106:723–735PubMedCrossRefGoogle Scholar
  22. 22.
    Costa EL, Musch G, Winkler T, Schroeder T, Harris RS, Jones HA, Venegas JG, VidalMelo MF (2010) Mild endotoxemia during mechanical ventilation produces spatially heterogeneous pulmonary neutrophilic inflammation in sheep. Anesthesiology 112:658–669PubMedCrossRefGoogle Scholar
  23. 23.
    Chen DL, Schuster DP (2004) Positron emission tomography with [18F]fluorodeoxyglucose to evaluate neutrophil kinetics during acute lung injury. Am J Physiol Lung Cell Mol Physiol 286:L834–L840PubMedCrossRefGoogle Scholar
  24. 24.
    Zhou Z, Kozlowksi J, Goodrich AL, Markman N, Chen DL, Schuster DP (2005) Molecular imaging of lung glucose uptake after endotoxin in mice. Am J Physiol Lung Cell Mol Physiol 289:L760–L768PubMedCrossRefGoogle Scholar
  25. 25.
    Zhou Z, Kozlowski J, Schuster DP (2005) Physiologic, biochemical, and imaging characterization of acute lung injury in mice. Am J Respir Crit Care Med 172:344–351PubMedCrossRefGoogle Scholar
  26. 26.
    Jones HA, Schofield J, Krausz T, Boobis A, Haslett C (1998) Pulmonary fibrosis correlates with duration of tissue neutrophil activation. Am J Respir Crit Care Med 158:620–628PubMedGoogle Scholar
  27. 27.
    Jones HA, Clark RJ, Rhodes CG, Schofield JB, Krausz T, Haslett C (1994) In vivo measurement of neutrophil activity in experimental lung inflammation. Am J Respir Crit Care Med 149:1635–1639PubMedGoogle Scholar
  28. 28.
    Chen DL, Rosenbluth DB, Mintun MA, Schuster DP (2006) FDG-PET imaging of pulmonary inflammation in healthy volunteers after airway instillation of endotoxin. J Appl Physiol 100:1602–1609PubMedCrossRefGoogle Scholar
  29. 29.
    Jones HA, Sriskandan S, Peters A, Pride N, Krausz T (1997) Dissociation of neutrophil emigration and metabolic activity in lobar pneumonia and bronchiectasis. Eur Respir J 10:795–803PubMedGoogle Scholar
  30. 30.
    Oehler R, Weingertmann G, Manhart N, Salzer U, Meissner M, Schlegel W, Spittler A, Bergmann M, Kandioler D, Oismüller C, Struse HM, Roth E (2000) Polytrauma induces increased expression of pyruvate kinase in neutrophils. Blood 95:1086–1092PubMedGoogle Scholar
  31. 31.
    Tager AM, Kradin RL, LaCamera P, Bercury SD, Campanella GSV, Leary CP, Polosukhin V, Zhao LH, Sakamoto H, Blackwell TS, Luster AD (2004) Inhibition of pulmonary fibrosis by the chemokine IP-10/CXCL10. Am J Respir Cell Mol Biol 31:395–404PubMedCrossRefGoogle Scholar
  32. 32.
    Li G, Malinchoc M, Cartin-Ceba R, Venkata CV, Kor DJ, Peters SG, Hubmayr RD, Gajic O (2011) Eight-year trend of acute respiratory distress syndrome: a population-based study in Olmsted County, Minnesota. Am J Respir Crit Care Med 183:59–66PubMedCrossRefGoogle Scholar
  33. 33.
    Reutershan J, Basit A, Galkina EV, Ley K (2005) Sequential recruitment of neutrophils into lung and bronchoalveolar lavage fluid in LPS-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 298:L807–L815CrossRefGoogle Scholar
  34. 34.
    Reiss M, Roos D (1978) Differences in oxygen metabolism of phagocytosing monocytes and neutrophils. J Clin Invest 61:480–488PubMedCrossRefGoogle Scholar
  35. 35.
    Nagagawa A, Nathan CF, Cohn ZA (1981) Hydrogen peroxide metabolism in human monocytes during differentiation in vitro. J Clin Invest 68:1243–1252CrossRefGoogle Scholar
  36. 36.
    Deichen JT, Prante O, Gack M, Schmiedehausen K, Kuwert T (2003) Uptake of [18F]fluorodeoxyglucose in human monocyte-macrophages in vitro. Eur J Nucl Med Mol Imaging 30:267–273PubMedCrossRefGoogle Scholar
  37. 37.
    Gamelli RL, Liu H, He LK, Hofmann CA (1996) Augmentations of glucose uptake and glucose transporter-1 in macrophages following thermal injury and sepsis in mice. J Leukoc Biol 59:639–647PubMedGoogle Scholar
  38. 38.
    Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T (1992) Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 33:1972–1980PubMedGoogle Scholar
  39. 39.
    Pawlik MT, Lubnow M, Gruber M, Taeger K, Riegger G, Pfeifer M, Ittner K (2009) Hydrochloric acid aspiration increases right ventricular systolic pressure in rats. Eur J Anaesthesiol 26:285–292PubMedCrossRefGoogle Scholar
  40. 40.
    Kubota R, Yamada S, Kubota K, Ishiwata K, Ido T (1993) Micro-autoradiographic method to study [18F]FDG uptake in mouse tissue. Nucl Med Biol 20:183–188PubMedCrossRefGoogle Scholar
  41. 41.
    Canat X, Guillaumont A, Bouaboula M, Poinot-Chazel C, Derocq JM, Carayon P, LeFur G, Casellas P (1993) Peripheral benzodiazepine receptor modulation with phagocyte differentiation. Biochem Pharmacol 46:551–554PubMedCrossRefGoogle Scholar
  42. 42.
    Branley HM, du Bois RM, Wells AU, Jones HA (2007) Peripheral-type benzodiazepine receptors in bronchoalveolar lavage cells of patients with interstitial lung disease. Nucl Med Biol 34:553–558PubMedCrossRefGoogle Scholar

Copyright information

© Copyright jointly held by Springer and ESICM 2012

Authors and Affiliations

  • Vanessa Zambelli
    • 1
    • 2
  • Giuseppe Di Grigoli
    • 3
    • 4
    • 6
  • Margherita Scanziani
    • 1
    • 5
  • Silvia Valtorta
    • 3
    • 4
    • 6
  • Maria Amigoni
    • 1
    • 5
  • Sara Belloli
    • 4
    • 6
  • Cristina Messa
    • 3
    • 4
    • 6
  • Antonio Pesenti
    • 1
    • 5
  • Ferruccio Fazio
    • 3
    • 6
  • Giacomo Bellani
    • 1
    • 5
  • Rosa Maria Moresco
    • 3
    • 4
    • 6
  1. 1.Department of Experimental Medicine (DIMS)University of Milan-BicoccaMonzaItaly
  2. 2.Department of Cardiovascular ResearchIstituto di Ricerche Farmacologiche Mario NegriMilanItaly
  3. 3.Tecnomed FoundationFoundation of University of Milano-BicoccaMilanItaly
  4. 4.IBFMCNRMilanItaly
  5. 5.Department of Perioperative Medicine and Intensive CareSan Gerardo HospitalMonzaItaly
  6. 6.Nuclear Medicine Department and PET CentreSan Raffaele Scientific InstituteMilanItaly

Personalised recommendations