Advertisement

Intensive Care Medicine

, 37:1595 | Cite as

PEEP-induced changes in lung volume in acute respiratory distress syndrome. Two methods to estimate alveolar recruitment

  • J. Dellamonica
  • N. Lerolle
  • C. Sargentini
  • G. Beduneau
  • F. Di Marco
  • A. Mercat
  • J. C. M. Richard
  • J. L. Diehl
  • J. Mancebo
  • J. J. Rouby
  • Q. Lu
  • G. Bernardin
  • L. Brochard
Original

Abstract

Purpose

Lung volumes, especially functional residual capacity (FRC), are decreased in acute respiratory distress syndrome (ARDS). Positive end-expiratory pressure (PEEP) contributes to increased end-expiratory lung volume (EELV) and to improved oxygenation, but differentiating recruitment of previously nonaerated lung units from distension of previously open lung units remains difficult. This study evaluated simple methods derived from bedside EELV measurements to assess PEEP-induced lung recruitment while monitoring strain.

Methods

Prospective multicenter study in 30 mechanically ventilated patients with ARDS in five university hospital ICUs. Two PEEP levels were studied, each for 45 min, and EELV (nitrogen washout/washin technique) was measured at both levels, with the difference (Δ) reflecting PEEP-induced lung volume changes. Alveolar recruitment was measured using pressure-volume (PV) curves. High and low recruiters were separated based on median recruitment at high PEEP. Minimum predicted increase in lung volume computed as the product of ΔPEEP by static compliance was subtracted from ΔEELV as an independent estimate of recruitment. Estimated and measured recruitments were compared. Strain induced by PEEP was also calculated from the same measurements.

Results

FRC was 31 ± 11% of predicted. Median [25th–75th percentiles] PEEP-induced recruitment was 272 [187–355] mL. Estimated recruitment correlated with recruited volume measured on PV curves (ρ = 0.68), with a slope close to identity. The ΔEELV/FRC ratio differentiated high from low recruiters (110 [76–135] vs. 55 [23–70]%, p = 0.001). Strain increase due to PEEP was larger in high recruiters (p = 0.002).

Conclusion

PEEP-induced recruitment and strain can be assessed at the bedside using EELV measurement. We describe two bedside methods for predicting low or high alveolar recruitment during ARDS.

Keywords

Nitrogen washout/washin End-expiratory lung volume Functional residual capacity Acute respiratory distress syndrome Mechanical ventilation Positive end-expiratory pressure Lung recruitment 

Notes

Acknowledgments

General Electric provided the “Engström” ventilators for the study and a research grant, but had no access to the data, analysis, interpretation or writing of the manuscript.

Conflict of interest

Four authors and their institution are involved in a patent with General Electric describing the method used to estimate alveolar recruitment described in the manuscript. The following persons and their institutions are involved: Jean Dellamonica for CHU de Nice, Hôpital L’Archet, Université de Nice Sophia Antipolis, France; Alain Mercat for CHU Angers, Angers, France; Jean-Christophe M. Richard for CHU Charles Nicolle, Rouen, France; Laurent Brochard for Assistance Publique-Hopitaux de Paris, groupe hospitalier Henri Mondor, Créteil, France and Université Paris EST, Créteil, France. A grant was also received from General Electric for the conduct of the study. General Electric had no access to the data nor to the content of the manuscript. All authors kept full control of the analysis of the data and the writing of the manuscript.

Supplementary material

134_2011_2333_MOESM1_ESM.doc (332 kb)
Supplementary material 1 (DOC 332 kb)

References

  1. 1.
    Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354PubMedCrossRefGoogle Scholar
  2. 2.
    Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM, Brienza A, Bruno F, Slutsky AS (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282:54–61PubMedCrossRefGoogle Scholar
  3. 3.
    Richard JC, Maggiore SM, Jonson B, Mancebo J, Lemaire F, Brochard L (2001) Influence of tidal volume on alveolar recruitment. Respective role of PEEP and a recruitment maneuver. Am J Respir Crit Care Med 163:1609–1613PubMedGoogle Scholar
  4. 4.
    Phoenix SI, Paravastu S, Columb M, Vincent JL, Nirmalan M (2009) Does a higher positive end expiratory pressure decrease mortality in acute respiratory distress syndrome? A systematic review and meta-analysis. Anesthesiology 110:1098–1105PubMedCrossRefGoogle Scholar
  5. 5.
    Gattinoni L, Caironi P, Cressoni M, Chiumello D, Ranieri VM, Quintel M, Russo S, Patroniti N, Cornejo R, Bugedo G (2006) Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 354:1775–1786PubMedCrossRefGoogle Scholar
  6. 6.
    Richard JC, Brochard L, Vandelet P, Breton L, Maggiore SM, Jonson B, Clabault K, Leroy J, Bonmarchand G (2003) Respective effects of end-expiratory and end-inspiratory pressures on alveolar recruitment in acute lung injury. Crit Care Med 31:89–92PubMedCrossRefGoogle Scholar
  7. 7.
    Caironi P, Cressoni M, Chiumello D, Ranieri M, Quintel M, Russo SG, Cornejo R, Bugedo G, Carlesso E, Russo R, Caspani L, Gattinoni L (2010) Lung opening and closing during ventilation of acute respiratory distress syndrome. Am J Respir Crit Care Med 181:578–586PubMedCrossRefGoogle Scholar
  8. 8.
    Brochard L (2010) New goals for positive end-expiratory pressure in acute respiratory distress syndrome: a paradigm shift or the end of an area of uncertainty? Am J Respir Crit Care Med 181:528–530PubMedCrossRefGoogle Scholar
  9. 9.
    Gattinoni L, Pesenti A (2005) The concept of “baby lung”. Intensive Care Med 31:776–784PubMedCrossRefGoogle Scholar
  10. 10.
    Dellamonica J, Lerolle N, Sargentini C, Thille A, Beduneau G, DiMarco F, Mercat A, Richard J-CM, Brochard L (2008) Comparison of two methods to measure PEEP-induced changes in lung volume. Am J Respir Crit Care Med 177:A244Google Scholar
  11. 11.
    Artigas A, Bernard GR, Carlet J, Dreyfuss D, Gattinoni L, Hudson L, Lamy M, Marini JJ, Matthay MA, Pinsky MR, Spragg R, Suter PM (1998) The American–European Consensus Conference on ARDS, part 2. Ventilatory, pharmacologic, supportive therapy, study design strategies and issues related to recovery and remodelling. Intensive Care Med 24:378–398PubMedCrossRefGoogle Scholar
  12. 12.
    Mercat A, Richard JC, Vielle B, Jaber S, Osman D, Diehl JL, Lefrant JY, Prat G, Richecoeur J, Nieszkowska A, Gervais C, Baudot J, Bouadma L, Brochard L (2008) Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299:646–655PubMedCrossRefGoogle Scholar
  13. 13.
    Olegard C, Sondergaard S, Houltz E, Lundin S, Stenqvist O (2005) Estimation of functional residual capacity at the bedside using standard monitoring equipment: a modified nitrogen washout/washin technique requiring a small change of the inspired oxygen fraction. Anesth Analg 101:206–212PubMedCrossRefGoogle Scholar
  14. 14.
    Scohy TV, Bikker IG, Hofland J, de Jong PL, Bogers AJ, Gommers D (2009) Alveolar recruitment strategy and PEEP improve oxygenation, dynamic compliance of respiratory system and end-expiratory lung volume in pediatric patients undergoing cardiac surgery for congenital heart disease. Paediatr Anaesth 19:1207–1212PubMedCrossRefGoogle Scholar
  15. 15.
    Bikker IG, Scohy TV, Ad JJCB, Bakker J, Gommers D (2009) Measurement of end-expiratory lung volume in intubated children without interruption of mechanical ventilation. Intensive Care Med 35:1749–1753PubMedCrossRefGoogle Scholar
  16. 16.
    Ibanez J, Raurich JM (1982) Normal values of functional residual capacity in the sitting and supine positions. Intensive Care Med 8:173–177PubMedCrossRefGoogle Scholar
  17. 17.
    Lu Q, Vieira SR, Richecoeur J, Puybasset L, Kalfon P, Coriat P, Rouby JJ (1999) A simple automated method for measuring pressure–volume curves during mechanical ventilation. Am J Respir Crit Care Med 159:275–282PubMedGoogle Scholar
  18. 18.
    Gattinoni L, Carlesso E, Cadringher P, Valenza F, Vagginelli F, Chiumello D (2003) Physical and biological triggers of ventilator-induced lung injury and its prevention. Eur Respir J Suppl 47:15s–25sPubMedCrossRefGoogle Scholar
  19. 19.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMedCrossRefGoogle Scholar
  20. 20.
    Griner PF, Mayewski RJ, Mushlin AI, Greenland P (1981) Selection and interpretation of diagnostic tests and procedures. Principles and applications. Ann Intern Med 94:557–592PubMedGoogle Scholar
  21. 21.
    Chiumello D, Carlesso E, Cadringher P, Caironi P, Valenza F, Polli F, Tallarini F, Cozzi P, Cressoni M, Colombo A, Marini JJ, Gattinoni L (2008) Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 178:346–355PubMedCrossRefGoogle Scholar
  22. 22.
    Falke KJ, Pontoppidan H, Kumar A, Leith DE, Geffin B, Laver MB (1972) Ventilation with end-expiratory pressure in acute lung disease. J Clin Invest 51:2315–2323PubMedCrossRefGoogle Scholar
  23. 23.
    Suter PM, Fairley B, Isenberg MD (1975) Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 292:284–289PubMedCrossRefGoogle Scholar
  24. 24.
    Rouby JJ, Constantin JM, Roberto De A, Girardi C, Zhang M, Lu Q (2004) Mechanical ventilation in patients with acute respiratory distress syndrome. Anesthesiology 101:228–234PubMedCrossRefGoogle Scholar
  25. 25.
    Rouby JJ, Puybasset L, Nieszkowska A, Lu Q (2003) Acute respiratory distress syndrome: lessons from computed tomography of the whole lung. Crit Care Med 31:S285–S295PubMedCrossRefGoogle Scholar
  26. 26.
    Jonson B, Richard JC, Straus C, Mancebo J, Lemaire F, Brochard L (1999) Pressure-volume curves and compliance in acute lung injury: evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med 159:1172–1178PubMedGoogle Scholar
  27. 27.
    Lu Q, Constantin JM, Nieszkowska A, Elman M, Vieira S, Rouby JJ (2006) Measurement of alveolar derecruitment in patients with acute lung injury: computerized tomography versus pressure-volume curve. Crit Care 10:R95PubMedCrossRefGoogle Scholar
  28. 28.
    Chiumello D, Cressoni M, Chierichetti M, Tallarini F, Botticelli M, Berto V, Mietto C, Gattinoni L (2008) Nitrogen washout/washin, helium dilution and computed tomography in the assessment of end expiratory lung volume. Crit Care 12:R150PubMedCrossRefGoogle Scholar
  29. 29.
    Patroniti N, Saini M, Zanella A, Weismann D, Isgro S, Bellani G, Foti G, Pesenti A (2008) Measurement of end-expiratory lung volume by oxygen washin–washout in controlled and assisted mechanically ventilated patients. Intensive Care Med 34:2235–2240PubMedCrossRefGoogle Scholar
  30. 30.
    Patroniti N, Bellani G, Cortinovis B, Foti G, Maggioni E, Manfio A, Pesenti A (2010) Role of absolute lung volume to assess alveolar recruitment in acute respiratory distress syndrome patients. Crit Care Med 38:1300–1307PubMedGoogle Scholar

Copyright information

© Copyright jointly held by Springer and ESICM 2011

Authors and Affiliations

  • J. Dellamonica
    • 1
    • 2
    • 10
  • N. Lerolle
    • 3
    • 4
  • C. Sargentini
    • 4
  • G. Beduneau
    • 5
  • F. Di Marco
    • 6
  • A. Mercat
    • 4
  • J. C. M. Richard
    • 5
    • 7
  • J. L. Diehl
    • 3
  • J. Mancebo
    • 8
  • J. J. Rouby
    • 9
  • Q. Lu
    • 9
  • G. Bernardin
    • 2
  • L. Brochard
    • 1
    • 10
    • 11
  1. 1.Réanimation Médicale, AP-HPCentre Hospitalier Albert Chenevier-Henri MondorCréteilFrance
  2. 2.Réanimation Médicale, CHU de Nice, Hôpital L’ArchetUniversité de Nice Sophia AntipolisNiceFrance
  3. 3.Réanimation Médicale, AP-HPHôpital Européen Georges PompidouParisFrance
  4. 4.Réanimation MédicaleCHU AngersAngersFrance
  5. 5.Réanimation MédicaleCHU Charles NicolleRouenFrance
  6. 6.Pneumologia, Ospedale San PaoloUniversità degli Studi di MilanoMilanItaly
  7. 7.UPRES EA 3830RouenFrance
  8. 8.Servei de Medicina IntensivaHospital de Sant PauBarcelonaSpain
  9. 9.Réanimation polyvalente, AP-HP, Hôpital Pitié SalpêtrièreUPMC, Université Paris 6ParisFrance
  10. 10.INSERM U-955, Université Paris ESTCréteilFrance
  11. 11.Intensive Care DepartmentUniversity Hospital and University of GenevaGenevaSwitzerland

Personalised recommendations