Intensive Care Medicine

, Volume 37, Issue 8, pp 1368–1377 | Cite as

Levosimendan attenuates pulmonary vascular remodeling

  • M. RevermannEmail author
  • M. Schloss
  • A. Mieth
  • A. Babelova
  • K. Schröder
  • S. Neofitidou
  • J. Buerkl
  • T. Kirschning
  • R. T. Schermuly
  • C. Hofstetter
  • R. P. Brandes



The calcium-sensitizing drug levosimendan increases myocardial contractility and, by activating K+-channels, dilates pulmonary vessels. In the acute setting, levosimendan is clinically used to treat right heart failure in pulmonary hypertension. As K+-channel activation elicits several beneficial effects in the vascular system, we hypothesized that levosimendan also attenuates the remodeling process in the monocrotaline model of rat pulmonary hypertension.

Methods and results

Animal subgroups received levosimendan, the K+-channel opener nicorandil, or levosimendan together with the K+-adenosine triphosphate (ATP)-sensitive potassium channel (KATP) blocker glibenclamide. Morphometric analyses revealed that levosimendan and nicorandil attenuated the increased pulmonary vascular medial wall thickness after monocrotaline challenge. Accordingly, in vivo BrdU assays revealed that levosimendan significantly diminished proliferation of pulmonary arterial smooth muscle cells (PASMCs), and this effect was attenuated by glibenclamide. Levosimendan also reduced right ventricular hypertrophy, but this effect was not glibenclamide sensitive and not recapitulated by nicorandil. In cell culture, levosimendan had a direct inhibitory effect on the platelet-derived growth factor (PDGF)-induced proliferation of PASMCs, which however required high concentrations of the compound, pointing towards an endothelial effect. Indeed, levosimendan increased cyclic guanosine monophosphate (cGMP) in human umbilical vein endothelial cells (HUVECs) and impaired the tumor necrosis factor-α (TNF-α)-induced inflammatory expression of E-selectin, intercellular adhesion molecule-1 (ICAM-1), cyclooxygenase-2 (COX-2), and monocyte chemotactic protein-1 (MCP-1). In luciferase reporter gene assays in HUVECs, levosimendan dose-dependently attenuated the TNF-α-stimulated increase of proinflammatory transcription factors activator protein 1 (AP1), hypoxia-inducible factor-1α (HIF-1α), and nuclear factor-κB (NF-κB).


Levosimendan attenuates pulmonary vascular remodeling, presumably by an antiproliferative and anti-inflammatory effect which is mediated by cellular hyperpolarization. The compound also has a direct inhibitory effect on cardiac hypertrophy, which is however K+-channel independent.


Levosimendan Pulmonary arterial hypertension Potassium channel Vascular remodeling 



The study was supported by the Deutsche Forschungsgemeinschaft (FOG 784), DGP-Excellence Clusters Cardio-Pulmonary System (ECCPS), and the B. Braun-Stiftung (M.R.). The authors are grateful for the excellent technical support of Susanne Schütz, Katalin Wandzioch, Isabella Schlöffel, and Sina Bätz.

Supplementary material

134_2011_2254_MOESM1_ESM.doc (56 kb)
Supplementary material 1 (DOC 55 kb)
134_2011_2254_MOESM2_ESM.doc (32 kb)
Supplementary material 2 (DOC 32 kb)
134_2011_2254_MOESM3_ESM.ppt (151 kb)
Supplementary material 3 (PPT 153 kb)


  1. 1.
    Hassoun PM, Mouthon L, Barbera JA, Eddahibi S, Flores SC, Grimminger F, Jones PL, Maitland ML, Michelakis ED, Morrell NW, Newman JH, Rabinovitch M, Schermuly R, Stenmark KR, Voelkel NF, Yuan JX, Humbert M (2009) Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol 54:S10–S19PubMedCrossRefGoogle Scholar
  2. 2.
    Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, Christman BW, Weir EK, Eickelberg O, Voelkel NF, Rabinovitch M (2004) Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 43:13S–24SPubMedCrossRefGoogle Scholar
  3. 3.
    Barst RJ, Gibbs JS, Ghofrani HA, Hoeper MM, McLaughlin VV, Rubin LJ, Sitbon O, Tapson VF, Galie N (2009) Updated evidence-based treatment algorithm in pulmonary arterial hypertension. J Am Coll Cardiol 54:S78–S84PubMedCrossRefGoogle Scholar
  4. 4.
    Westphal M, Morelli A, Van AH (2007) Dear levosimendan, the right ventricle will thank you! Crit Care Med 35:952–953PubMedCrossRefGoogle Scholar
  5. 5.
    Sorsa T, Pollesello P, Rosevear PR, Drakenberg T, Kilpelainen I (2004) Stereoselective binding of levosimendan to cardiac troponin C causes Ca2+-sensitization. Eur J Pharmacol 486:1–8PubMedCrossRefGoogle Scholar
  6. 6.
    Bowman P, Haikala H, Paul RJ (1999) Levosimendan, a calcium sensitizer in cardiac muscle, induces relaxation in coronary smooth muscle through calcium desensitization. J Pharmacol Exp Ther 288:316–325PubMedGoogle Scholar
  7. 7.
    Pataricza J, Krassoi I, Hohn J, Kun A, Papp JG (2003) Functional role of potassium channels in the vasodilating mechanism of levosimendan in porcine isolated coronary artery. Cardiovasc Drugs Ther 17:115–121PubMedCrossRefGoogle Scholar
  8. 8.
    Yokoshiki H, Sperelakis N (2003) Vasodilating mechanisms of levosimendan. Cardiovasc Drugs Ther 17:111–113PubMedCrossRefGoogle Scholar
  9. 9.
    Kota B, Prasad AS, Economides C, Singh BN (2008) Levosimendan and calcium sensitization of the contractile proteins in cardiac muscle: impact on heart failure. J Cardiovasc Pharmacol Ther 13:269–278PubMedCrossRefGoogle Scholar
  10. 10.
    De Witt BJ, Ibrahim IN, Bayer E, Fields AM, Richards TA, Banister RE, Kaye AD (2002) An analysis of responses to levosimendan in the pulmonary vascular bed of the cat. Anesth Analg 94:1427–1433 (table)PubMedGoogle Scholar
  11. 11.
    Bergh CH, Andersson B, Dahlstrom U, Forfang K, Kivikko M, Sarapohja T, Ullman B, Wikstrom G (2010) Intravenous levosimendan vs. dobutamine in acute decompensated heart failure patients on beta-blockers. Eur J Heart Fail 12:404–410PubMedCrossRefGoogle Scholar
  12. 12.
    Blackiston DJ, McLaughlin KA, Levin M (2009) Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle. Cell Cycle 8:3519–3528PubMedCrossRefGoogle Scholar
  13. 13.
    Lang F, Foller M, Lang KS, Lang PA, Ritter M, Gulbins E, Vereninov A, Huber SM (2005) Ion channels in cell proliferation and apoptotic cell death. J Membr Biol 205:147–157PubMedCrossRefGoogle Scholar
  14. 14.
    Cook SJ, Lockyer PJ (2006) Recent advances in Ca(2+)-dependent Ras regulation and cell proliferation. Cell Calcium 39:101–112PubMedCrossRefGoogle Scholar
  15. 15.
    Di A, Malik AB (2010) TRP channels and the control of vascular function. Curr Opin Pharmacol 10:127–132PubMedCrossRefGoogle Scholar
  16. 16.
    Fleming I, Busse R (2003) Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 284:R1–R12PubMedGoogle Scholar
  17. 17.
    Sakao S, Tatsumi K, Voelkel NF (2009) Endothelial cells and pulmonary arterial hypertension: apoptosis, proliferation, interaction and transdifferentiation. Respir Res 10:95PubMedCrossRefGoogle Scholar
  18. 18.
    Jones PL, Rabinovitch M (1996) Tenascin-C is induced with progressive pulmonary vascular disease in rats and is functionally related to increased smooth muscle cell proliferation. Circ Res 79:1131–1142PubMedGoogle Scholar
  19. 19.
    Schermuly RT, Kreisselmeier KP, Ghofrani HA, Samidurai A, Pullamsetti S, Weissmann N, Schudt C, Ermert L, Seeger W, Grimminger F (2004) Antiremodeling effects of iloprost and the dual-selective phosphodiesterase 3/4 inhibitor tolafentrine in chronic experimental pulmonary hypertension. Circ Res 94:1101–1108PubMedCrossRefGoogle Scholar
  20. 20.
    Revermann M, Barbosa-Sicard E, Dony E, Schermuly RT, Morisseau C, Geisslinger G, Fleming I, Hammock BD, Brandes RP (2009) Inhibition of the soluble epoxide hydrolase attenuates monocrotaline-induced pulmonary hypertension in rats. J Hypertens 27:322–331PubMedCrossRefGoogle Scholar
  21. 21.
    Schroder K, Kohnen A, Aicher A, Liehn EA, Buchse T, Stein S, Weber C, Dimmeler S, Brandes RP (2009) NADPH oxidase Nox2 is required for hypoxia-induced mobilization of endothelial progenitor cells. Circ Res 105:537–544PubMedCrossRefGoogle Scholar
  22. 22.
    Wiemer G, Scholkens BA, Becker RH, Busse R (1991) Ramiprilat enhances endothelial autacoid formation by inhibiting breakdown of endothelium-derived bradykinin. Hypertension 18:558–563PubMedGoogle Scholar
  23. 23.
    Fisslthaler B, Loot AE, Mohamed A, Busse R, Fleming I (2008) Inhibition of endothelial nitric oxide synthase activity by proline-rich tyrosine kinase 2 in response to fluid shear stress and insulin. Circ Res 102:1520–1528PubMedCrossRefGoogle Scholar
  24. 24.
    Hongo M, Mawatari E, Sakai A, Ruan Z, Koizumi T, Terasawa F, Yazaki Y, Kinoshita O, Ikeda U, Shibamoto T (2005) Effects of nicorandil on monocrotaline-induced pulmonary arterial hypertension in rats. J Cardiovasc Pharmacol 46:452–458PubMedCrossRefGoogle Scholar
  25. 25.
    Taira N (1989) Nicorandil as a hybrid between nitrates and potassium channel activators. Am J Cardiol 63:18J–24JPubMedCrossRefGoogle Scholar
  26. 26.
    Minamiyama Y, Takemura S, Hai S, Suehiro S, Okada S, Funae Y (2007) Nicorandil elevates tissue cGMP levels in a nitric-oxide-independent manner. J Pharmacol Sci 103:33–39PubMedCrossRefGoogle Scholar
  27. 27.
    Kuno A, Critz SD, Cohen MV, Downey JM (2007) Nicorandil opens mitochondrial K(ATP) channels not only directly but also through a NO-PKG-dependent pathway. Basic Res Cardiol 102:73–79PubMedCrossRefGoogle Scholar
  28. 28.
    Ogawa N, Saito M, Mori A, Sakamoto K, Kametaka S, Nakahara T, Ishii K (2007) Vasodilator effect of nicorandil on retinal blood vessels in rats. Naunyn Schmiedebergs Arch Pharmacol 375:323–328PubMedCrossRefGoogle Scholar
  29. 29.
    Yildiz O (2007) Vasodilating mechanisms of levosimendan: involvement of K+ channels. J Pharmacol Sci 104:1–5PubMedCrossRefGoogle Scholar
  30. 30.
    Kersten JR, Montgomery MW, Pagel PS, Warltier DC (2000) Levosimendan, a new positive inotropic drug, decreases myocardial infarct size via activation of K(ATP) channels. Anesth Analg 90:5–11PubMedCrossRefGoogle Scholar
  31. 31.
    Kaheinen P, Pollesello P, Levijoki J, Haikala H (2001) Levosimendan increases diastolic coronary flow in isolated guinea-pig heart by opening ATP-sensitive potassium channels. J Cardiovasc Pharmacol 37:367–374PubMedCrossRefGoogle Scholar
  32. 32.
    Akar F, Manavbasi Y, Parlar AI, Ulus AT, Katircioglu SF (2007) The gender differences in the relaxation to levosimendan of human internal mammary artery. Cardiovasc Drugs Ther 21:331–338PubMedCrossRefGoogle Scholar
  33. 33.
    Shah RR (2010) Drug-induced QT interval shortening: potential harbinger of proarrhythmia and regulatory perspectives. Br J Pharmacol 159:58–69PubMedCrossRefGoogle Scholar
  34. 34.
    Copple BL, Rondelli CM, Maddox JF, Hoglen NC, Ganey PE, Roth RA (2004) Modes of cell death in rat liver after monocrotaline exposure. Toxicol Sci 77:172–182PubMedCrossRefGoogle Scholar
  35. 35.
    Kopustinskiene DM, Pollesello P, Saris NE (2001) Levosimendan is a mitochondrial K(ATP) channel opener. Eur J Pharmacol 428:311–314PubMedCrossRefGoogle Scholar
  36. 36.
    Sareila O, Korhonen R, Auvinen H, Hamalainen M, Kankaanranta H, Nissinen E, Moilanen E (2008) Effects of levo- and dextrosimendan on NF-kappaB-mediated transcription, iNOS expression and NO production in response to inflammatory stimuli. Br J Pharmacol 155:884–895PubMedCrossRefGoogle Scholar
  37. 37.
    van Empel VP, De Windt LJ (2004) Myocyte hypertrophy and apoptosis: a balancing act. Cardiovasc Res 63:487–499PubMedCrossRefGoogle Scholar
  38. 38.
    Landmesser U, Wollert KC, Drexler H (2009) Potential novel pharmacological therapies for myocardial remodelling. Cardiovasc Res 81:519–527PubMedCrossRefGoogle Scholar
  39. 39.
    Perros F, Dorfmuller P, Souza R, Durand-Gasselin I, Godot V, Capel F, Adnot S, Eddahibi S, Mazmanian M, Fadel E, Herve P, Simonneau G, Emilie D, Humbert M (2007) Fractalkine-induced smooth muscle cell proliferation in pulmonary hypertension. Eur Respir J 29:937–943PubMedCrossRefGoogle Scholar
  40. 40.
    Okawa-Takatsuji M, Aotsuka S, Fujinami M, Uwatoko S, Kinoshita M, Sumiya M (1999) Up-regulation of intercellular adhesion molecule-1 (ICAM-1), endothelial leucocyte adhesion molecule-1 (ELAM-1) and class II MHC molecules on pulmonary artery endothelial cells by antibodies against U1-ribonucleoprotein. Clin Exp Immunol 116:174–180PubMedCrossRefGoogle Scholar
  41. 41.
    Sanchez O, Marcos E, Perros F, Fadel E, Tu L, Humbert M, Dartevelle P, Simonneau G, Adnot S, Eddahibi S (2007) Role of endothelium-derived CC chemokine ligand 2 in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 176:1041–1047PubMedCrossRefGoogle Scholar
  42. 42.
    Ikeda Y, Yonemitsu Y, Kataoka C, Kitamoto S, Yamaoka T, Nishida K, Takeshita A, Egashira K, Sueishi K (2002) Anti-monocyte chemoattractant protein-1 gene therapy attenuates pulmonary hypertension in rats. Am J Physiol Heart Circ Physiol 283:H2021–H2028PubMedGoogle Scholar
  43. 43.
    Rakotoniaina Z, Guerard P, Lirussi F, Rochette L, Dumas M, Goirand F, Bardou M (2008) Celecoxib but not the combination of celecoxib + atorvastatin prevents the development of monocrotaline-induced pulmonary hypertension in the rat. Naunyn Schmiedebergs Arch Pharmacol 378:241–251PubMedCrossRefGoogle Scholar
  44. 44.
    Reinhart K, Bayer O, Brunkhorst F, Meisner M (2002) Markers of endothelial damage in organ dysfunction and sepsis. Crit Care Med 30:S302–S312PubMedCrossRefGoogle Scholar
  45. 45.
    Scheiermann P, Ahluwalia D, Hoegl S, Dolfen A, Revermann M, Zwissler B, Muhl H, Boost KA, Hofstetter C (2009) Effects of intravenous and inhaled levosimendan in severe rodent sepsis. Intensive Care Med 35:1412–1419PubMedCrossRefGoogle Scholar
  46. 46.
    Boost KA, Hoegl S, Dolfen A, Czerwonka H, Scheiermann P, Zwissler B, Hofstetter C (2008) Inhaled levosimendan reduces mortality and release of proinflammatory mediators in a rat model of experimental ventilator-induced lung injury. Crit Care Med 36:1873–1879PubMedCrossRefGoogle Scholar
  47. 47.
    Trikas A, Antoniades C, Latsios G, Vasiliadou K, Karamitros I, Tousoulis D, Tentolouris C, Stefanadis C (2006) Long-term effects of levosimendan infusion on inflammatory processes and sFas in patients with severe heart failure. Eur J Heart Fail 8:804–809PubMedCrossRefGoogle Scholar
  48. 48.
    Liu X, Wu JY, Zhou F, Sun XL, Yao HH, Yang Y, Ding JH, Hu G (2006) The regulation of rotenone-induced inflammatory factor production by ATP-sensitive potassium channel expressed in BV-2 cells. Neurosci Lett 394:131–135PubMedCrossRefGoogle Scholar
  49. 49.
    De CR, Libby P, Peng HB, Thannickal VJ, Rajavashisth TB, Gimbrone MA Jr, Shin WS, Liao JK (1995) Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 96:60–68CrossRefGoogle Scholar

Copyright information

© Copyright jointly held by Springer and ESICM 2011

Authors and Affiliations

  • M. Revermann
    • 1
    • 2
    Email author
  • M. Schloss
    • 1
  • A. Mieth
    • 1
  • A. Babelova
    • 1
  • K. Schröder
    • 1
  • S. Neofitidou
    • 1
  • J. Buerkl
    • 1
  • T. Kirschning
    • 2
  • R. T. Schermuly
    • 3
  • C. Hofstetter
    • 2
  • R. P. Brandes
    • 1
  1. 1.Institut für Kardiovaskuläre Physiologie, Fachbereich MedizinGoethe-Universität FrankfurtFrankfurt am MainGermany
  2. 2.Klinik für Anästhesiologie und Operative IntensivmedizinMedizinische Fakultät Mannheim der Universität HeidelbergMannheimGermany
  3. 3.Max-Planck-Institute for Heart and Lung ResearchBad NauheimGermany

Personalised recommendations