Advertisement

Intensive Care Medicine

, Volume 37, Issue 8, pp 1344–1351 | Cite as

Effects of esmolol on systemic and pulmonary hemodynamics and on oxygenation in pigs with hypodynamic endotoxin shock

  • Jerome Aboab
  • Veronique Sebille
  • Mercé Jourdain
  • Jacques Mangalaboyi
  • Miloud Gharbi
  • Arnaud Mansart
  • Djillali AnnaneEmail author
Experimental

Abstract

Purpose

The aim of this experimental study is to investigate cardiovascular tolerance of blockade of beta-adrenergic receptors in an endotoxin model.

Design

Prospective, randomized, controlled study.

Setting

Animal laboratory in a university medical center.

Methods

Ten anesthetized, mechanically ventilated pigs were challenged with intravenous lipopolysaccharide (LPS) to achieve a status of profound hypodynamic shock. Systemic and pulmonary hemodynamics and cardiac output were continuously monitored throughout the 5-h study period, and blood samples were taken at baseline (T − 30 min), 1 h from the beginning of LPS infusion (T + 60 min), and every 2 h (T + 180 min and T + 300 min). Animals were randomly assigned to continuous intravenous esmolol infusion titrated to decrease heart rate by 20% or isotonic saline.

Results

Esmolol decreased heart rate by 20%, while in the saline group, heart rate increased by 7% and 22% at T + 180 min and T + 300 min, respectively (p < 0.001). In esmolol-treated animals, cardiac index decreased by 9% at T + 180 min and by 2% at T + 300 min, and in controls by 14% at T + 180 min and by 27% at T + 300 min (p = 0.870). In esmolol-treated animals, median (interquartile range, IQR) stroke index was 31 (6) and 47 (11) ml/min/m2 at T + 180 min and T + 300 min, respectively, and decreased steadily from 45 (20) to 18 (13) ml/min/m2 in controls (p = 0.030). There were no significant differences between groups for any other hemodynamics variables, except for systemic vascular resistance (SVR) (p = 0.017).

Conclusions

In large animals with endotoxemic shock, continuous infusion of esmolol, a selective beta-1 adrenergic blocker, titrated to decrease heart rate by 20%, was well tolerated and may offset LPS-induced cardiac dysfunction by a preload positive effect.

Keywords

Septic shock Beta blockade Esmolol Hemodynamics Animal model 

Notes

Acknowledgments

This study was funded by a grant from the Société de Réanimation de Langue Française.

Supplementary material

134_2011_2236_MOESM1_ESM.emf (609 kb)
Supplementary material 1 (EMF 609 kb)
134_2011_2236_MOESM2_ESM.emf (358 kb)
Supplementary material 2 (EMF 358 kb)
134_2011_2236_MOESM3_ESM.emf (224 kb)
Supplementary material 3 (EMF 224 kb)
134_2011_2236_MOESM4_ESM.emf (627 kb)
Supplementary material 4 (EMF 627 kb)
134_2011_2236_MOESM5_ESM.doc (26 kb)
Supplementary material 5 (DOC 26 kb)

References

  1. 1.
    Annane D, Bellissant E, Cavaillon JM (2005) Septic shock. Lancet 365:63–78PubMedCrossRefGoogle Scholar
  2. 2.
    Parrillo JE, Parker MM, Natanson C, Suffredini AF, Danner RL, Cunnion RE, Ognibene FP (1990) Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med 113:227–242PubMedGoogle Scholar
  3. 3.
    Gulick T, Chung MK, Pieper SJ (1989) Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte beta-adrenergic responsiveness. Proc Natl Acad Sci USA 86:6753–6757PubMedCrossRefGoogle Scholar
  4. 4.
    Kumar A, Thota V, Dee L, Olson J, Uretz E, Parrillo JE (1996) Tumor necrosis factor alpha and interleukin 1 beta are responsible for in vitro myocardial cell depression induced by human septic shock serum. J Exp Med 183:949–958PubMedCrossRefGoogle Scholar
  5. 5.
    Benedict CR, Grahame-Smith DG (1978) Plasma noradrenaline and adrenaline concentrations and dopamine beta hydroxylase activity in patients with shock due to septicemia, trauma, and heamorrhage. Q J Med 185:1–20Google Scholar
  6. 6.
    Goldstein B, Kempski MH, Stair D, Tipton RB, De King D, De Long DJ, De Asla R, Cox C, Lund N, Woolf PD (1995) Autonomic modulation of heart rate variability during endotoxin shock in rabbits. Crit Care Med 23:1694–1702PubMedCrossRefGoogle Scholar
  7. 7.
    Annane D, Trabold F, Sharshar T, Jarrin I, Blanc AS, Raphael JC, Gajdos P (1999) Inappropriate sympathetic activation at onset of septic shock: a spectral analysis approach. Am J Respir Crit Care Med 160:458–465PubMedGoogle Scholar
  8. 8.
    Mann DL, Bristow MR (2005) Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation 11:2837–2849CrossRefGoogle Scholar
  9. 9.
    Sharshar T, Gray F, Lorin de la Grandmaison G, Hopkinson NS, Ross E, Dorandeu A, Orlikowski D, Raphael JC, Gajdos P, Annane D (2003) Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet 362:1799–1805PubMedCrossRefGoogle Scholar
  10. 10.
    Bristow MR, Feldman AM, Adams KF Jr, Goldstein S (2003) Selective versus nonselective beta-blockade for heart failure therapy: are there lessons to be learned from the COMET trial? J Card Fail 9:444–453PubMedCrossRefGoogle Scholar
  11. 11.
    de Montmollin E, Aboab J, Mansart A, Annane D (2009) Bench-to-bedside review: beta-adrenergic modulation in sepsis. Crit Care 13:230PubMedCrossRefGoogle Scholar
  12. 12.
    Werdan K, Schmidt H, Ebelt H, Zorn-Pauly K, Koidl B, Hoke RS, Heinroth K, Müller-Werdan U (2009) Impaired regulation of cardiac function in sepsis, SIRS, MODS. Can J Physiol Pharmacol 87:266–274PubMedCrossRefGoogle Scholar
  13. 13.
    Zaugg M, Schaub MC, Pasch T (2002) Modulation of beta-adrenergic receptor subtype activities in perioperative medicine: mechanisms and sites of action. Br J Anaesth 88:101–123PubMedCrossRefGoogle Scholar
  14. 14.
    Mangano DT, Layug EL, Wallace A, Tateo I (1996) Effect of atenolol on mortality and cardiovascular morbidity after non cardiac surgery. N Engl J Med 335:1713–1720PubMedCrossRefGoogle Scholar
  15. 15.
    Poldermans D, Boersma E, Bax JJ (1999) The effect of bisoprolol on perioperative mortality and myocardial infarction in high-risk patients undergoing vascular surgery. N Engl J Med 341:1789–1794PubMedCrossRefGoogle Scholar
  16. 16.
    Herndon DN, Hart DW, Wolf SE, Chinkes DL, Wolfe RR (2001) Reversal of catabolism by beta-blockade after severe burns. N Engl J Med 345:1223–1229PubMedCrossRefGoogle Scholar
  17. 17.
    Gore DC, Wolfe RR (2006) Hemodynamic and metabolic effects of selective beta1 adrenergic blockade during sepsis. Surgery 139:686–694PubMedCrossRefGoogle Scholar
  18. 18.
    Suzuki T, Morisaki H, Serita R, Yamamoto M, Kotate Y, Ishizaka A, Takeda J (2005) Infusion of the beta-adrenergic blocker esmolol attenuates myocardial dysfunction in septic rats. Crit Care Med 33:2294–2301PubMedCrossRefGoogle Scholar
  19. 19.
    Ackland GL, Yao ST, Rudiger A, Dyson A, Stidwill R, Poputnikov D, Singer M, Gourine AV (2010) Cardioprotection, attenuated systemic inflammation, and survival benefit of beta1-adrenoceptor blockade in severe sepsis in rats. Crit Care Med 38:388–394PubMedCrossRefGoogle Scholar
  20. 20.
    Jourdain M, Carrette O, Tournoys A, Fourrier F, Mizon C, Mangalaboyi J, Goudemand J, Mizon J, Chopin C (1997) Effects of inter-alpha-inhibitor in experimental endotoxic shock and disseminated intravascular coagulation. Am J Respir Crit Care Med 156:1825–1833PubMedGoogle Scholar
  21. 21.
    Fincke R, Hochman JS, Lowe AM, Menon V, Slater JN, Webb JG, Le Jemtel TH, Cotter G, Shock Investigators (2004) Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: a report from the shock trial registry. J Am Coll Cardiol 44:340–348PubMedCrossRefGoogle Scholar
  22. 22.
    Kelley KW, Curtis SE, Marzan GT, Karara HM, Anderson CR (1973) Body surface area of female swine. J Anim Sci 36:927–930PubMedGoogle Scholar
  23. 23.
    Verbeke G, Molenberghs G (2000) Linear mixed models for longitudinal data. Springer, New YorkGoogle Scholar
  24. 24.
    Kenward MG, Roger JH (1997) Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53:983–997PubMedCrossRefGoogle Scholar
  25. 25.
    Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Control AC-19:716–723CrossRefGoogle Scholar
  26. 26.
    Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464CrossRefGoogle Scholar
  27. 27.
    Schmidt DA, Tumbleson ME (1986) Swine hematology. In: Tumbleson ME (ed) Swine in biomedical research. Plenum, New York, pp 767–782Google Scholar
  28. 28.
    Volz-Zang C, Eckrich B, Jahn P, Schneidrowski B, Schulte B, Palm D (1994) Esmolol, an ultrashort acting selective beta 1-adrenoreceptor antagonist: pharmacodynamic and pharmacokinetic properties. Eur J Clin Pharmacol 46:399–404PubMedCrossRefGoogle Scholar
  29. 29.
    Berk JL, Hagen JF, Beyer WH, Gerber MJ, Dochat GR (1969) The treatment of endotoxin shock by beta adrenergic blockade. Ann Surg 169:74–81PubMedCrossRefGoogle Scholar
  30. 30.
    POISE Study Group, Devereaux PJ, Yang H, Yusuf S, Guyatt G, Leslie K, Villar JC, Xavier D, Chrolavicius S, Greenspan L, Pogue J, Pais P, Liu L, Xu S, Málaga G, Avezum A, Chan M, Montori VM, Jacka M, Choi P (2008) Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): a randomised controlled trial. Lancet 371:1839–1847PubMedCrossRefGoogle Scholar

Copyright information

© Copyright jointly held by Springer and ESICM 2011

Authors and Affiliations

  • Jerome Aboab
    • 1
    • 4
  • Veronique Sebille
    • 2
  • Mercé Jourdain
    • 3
  • Jacques Mangalaboyi
    • 3
  • Miloud Gharbi
    • 1
  • Arnaud Mansart
    • 4
  • Djillali Annane
    • 1
    • 4
    Email author
  1. 1.Service de Réanimation, Hôpital Raymond Poincaré, AP-HPUniversité de Versailles Saint QuentinGarchesFrance
  2. 2.Laboratoire de Biomathématiques-Biostatistique, EA 4275, Faculté de PharmacieUniversité de NantesNantes Cedex 1France
  3. 3.Service de RéanimationHôpital Roger SalengroLilleFrance
  4. 4.Laboratoire d’étude de la réponse neuroendocrine au sepsis- EA 4342Université de Versailles Saint QuentinGarchesFrance

Personalised recommendations