Advertisement

Intensive Care Medicine

, Volume 37, Issue 7, pp 1201–1209 | Cite as

WNT/β-catenin signaling is modulated by mechanical ventilation in an experimental model of acute lung injury

  • Jesús VillarEmail author
  • Nuria E. Cabrera
  • Milena Casula
  • Francisco Valladares
  • Carlos Flores
  • Josefina López-Aguilar
  • Lluis Blanch
  • Haibo Zhang
  • Robert M. Kacmarek
  • Arthur S. Slutsky
Experimental

Abstract

Purpose

The mechanisms involved in lung injury progression during acute lung injury (ALI) are still poorly understood. Because WNT/β-catenin signaling has been shown to be involved in epithelial cell injury and hyperplasia during inflammation and sepsis, we hypothesized that it would be modulated by mechanical ventilation (MV) in an experimental model of sepsis-induced ALI.

Methods

This study was a prospective, randomized, controlled animal study performed using adult male Sprague–Dawley rats. Sepsis was induced by cecal ligation and perforation. At 18 h, surviving animals were randomized to spontaneous breathing or two strategies of MV for 4 h: low tidal volume (V T) (6 ml/kg) plus 10 cmH2O of positive end-expiratory pressure (PEEP) versus high (20 ml/kg) tidal volume (V T) with zero PEEP. Histological evaluation, measurements of WNT5A, total β-catenin, and matrix metalloproteinase-7 (MMP7) protein levels by Western blot, and their immunohistochemical localization in the lungs were analyzed.

Results

Sepsis and high-V T MV caused lung inflammation and perivascular edema with cellular infiltrates and collagen deposition. Protein levels of WNT5A, β-catenin, and MMP7 in the lungs were increased in animals with sepsis-induced ALI. High-V T MV was associated with higher levels of WNT5A, β-catenin, and MMP7 protein levels (p < 0.001), compared to healthy control animals. By contrast, low-V T MV markedly reduced WNT5A, β-catenin, and MMP7 protein levels (p < 0.001).

Conclusions

Our findings demonstrate that the WNT/β-catenin signaling pathway is modulated early during sepsis and ventilator-induced lung injury, suggesting that activation of this pathway could play an important role in both lung injury progression and repair.

Keywords

Acute lung injury WNT/β-catenin pathway Ventilator-induced lung injury Metalloproteinase 

Notes

Acknowledgments

Supported by grants from Ministry of Science of Spain (SAF 2004-06833), Instituto de Salud Carlos III of Spain (PI 10/0393), the Canadian Institutes of Health Research, FUNCIS (53/04), and by a specific agreement between Instituto de Salud Carlos III and FUNCIS (EMER07/001) under the ENCYT 2015 framework.

Supplementary material

134_2011_2234_MOESM1_ESM.doc (401 kb)
Supplementary material 1 (DOC 401 kb)

References

  1. 1.
    Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342:1334–1349PubMedCrossRefGoogle Scholar
  2. 2.
    Shimabukuro DW, Sawa T, Gropper MA (2003) Injury and repair in lung and airways. Crit Care Med 31(Suppl):S524–S531PubMedCrossRefGoogle Scholar
  3. 3.
    Adamson IY, Young L, Bowden DH (1998) Relationship of alveolar epithelial injury and repair to the induction of pulmonary fibrosis. Am J Pathol 130:377–383Google Scholar
  4. 4.
    Douglas IS, Diaz del Valle F, Winn RA, Voelkel NF (2006) Beta-catenin in the fibroproliferative response to acute lung injury. Am J Respir Cell Mol Biol 34:274–285PubMedCrossRefGoogle Scholar
  5. 5.
    Horowitz JC, Cui Z, Moore TA, Meier TR, Reddy RC, Toews GB, Standiford TJ, Thannickal VJ (2006) Constitutive activation of prosurvival signaling in alveolar mesenchymal cells isolated from patients with nonresolving acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol 290:L415–L425PubMedCrossRefGoogle Scholar
  6. 6.
    Chilosi M, Poletti V, Zamò A, Lestani M, Montagna L, Piccoli P, Pedron S, Bertaso M, Scarpa A, Murer B, Cancellieri A, Maestro R, Semenzato G, Doglioni C (2003) Aberrant Wnt/beta-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol 162:1495–1502PubMedCrossRefGoogle Scholar
  7. 7.
    George SJ (2008) Wnt pathway. A new role in regulation of inflammation. Arterioscler Thromb Vasc Biol 28:400–402PubMedCrossRefGoogle Scholar
  8. 8.
    Marshall RP, Bellingan G, Webb S, Puddicombe A, Goldsack N, McAnulty RJ, Laurent GJ (2000) Fibroproliferation occurs early in the acute respiratory distress syndrome and impacts on outcome. Am J Respir Crit Care Med 162:1783–1788PubMedGoogle Scholar
  9. 9.
    Logan C, Nusse R (2004) The Wnt signalling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810PubMedCrossRefGoogle Scholar
  10. 10.
    Pongracz JE, Stockley RA (2006) Wnt signalling in lung development and diseases. Respir Res 7:15PubMedCrossRefGoogle Scholar
  11. 11.
    Pereira C, Schaer DJ, Bachli EB, Kurrer MO, Schoedon G (2008) Wnt5A/CaMKII signaling contributes to the inflammatory response of macrophages and is a target for the antiinflammatory action of activated protein C and interleukin-10. Arterioscler Thromb Vasc Biol 28:504–510PubMedCrossRefGoogle Scholar
  12. 12.
    Mikels AJ, Nusse R (2006) Purified Wnt5a protein activates or inhibits β-catenin-TCF signalling depending on receptor context. PLoS Biol 4:e115PubMedCrossRefGoogle Scholar
  13. 13.
    Zuo F, Kaminski N, Eugui E, Allard J, Yakhini Z, Ben-Dor A, Lollini L, Morris D, Kim Y, DeLustro B, Sheppard D, Pardo A, Selman M, Heller RA (2002) Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans. Proc Natl Acad Sci U S A 99:6292–6297PubMedCrossRefGoogle Scholar
  14. 14.
    Villar J, Ribeiro SP, Mullen JB, Kuliszewski M, Post M, Slutsky AS (1994) Induction of the heat shock response reduces mortality rate and organ damage in a sepsis-induced acute lung injury model. Crit Care Med 22:914–921PubMedCrossRefGoogle Scholar
  15. 15.
    Herrera MT, Toledo C, Valladares F, Muros M, Diaz-Flores L, Flores C, Villar J (2003) Positive end-expiratory pressure modulates local and systemic inflammatory responses in a sepsis-induced lung injury model. Intensive Care Med 29:1345–1353PubMedCrossRefGoogle Scholar
  16. 16.
    Villar J, Cabrera N, Casula M, Flores C, Valladares F, Muros M, Blanch L, Slutsky AS, Kacmarek RM (2010) Mechanical ventilation modulates toll-like receptor signaling pathway in a sepsis-induced lung injury model. Intensive Care Med 36:1049–1057PubMedCrossRefGoogle Scholar
  17. 17.
    Villar J, Cabrera NE, Casula M, Flores C, Valladares F, Diaz-Flores L, Muros M, Slutsky AS, Kacmarek RM (2010) Mechanical ventilation modulates TLR4 and IRAK-3 in a non-infectious, ventilator-induced lung injury model. Respir Res 11:27PubMedCrossRefGoogle Scholar
  18. 18.
    Crosby LM, Waters CM (2010) Epithelial repair mechanisms in the lung. Am J Physiol Lung Cell Mol Physiol 298:L715–L731PubMedCrossRefGoogle Scholar
  19. 19.
    Königshoff M, Eickelberg O (2010) WNT signaling in lung disease. Am J Respir Cell Mol Biol 42:21–31PubMedCrossRefGoogle Scholar
  20. 20.
    Flozak AS, Lam AP, Russell S, Jain M, Peled ON, Sheppard KA, Beri R, Mutlu GM, Budinger GRS, Gottardi CJ (2010) β-catenin/T-cell factor signaling is activated during lung injury and promotes the survival and migration of alveolar epithelial cells. J Biol Chem 285:3157–3167PubMedCrossRefGoogle Scholar
  21. 21.
    Konigshoff M, Kramer M, Balsara N, Wilhelm J, Amarie OV, Jahn A, Rose F, Fink L, Seeger W, Schaefer L, Günther A, Eickelberg O (2009) WNT1-inducible signaling protein-1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary fibrosis. J Clin Invest 119:772–787PubMedGoogle Scholar
  22. 22.
    Liu L, Carron B, Yee HT, Yie TA, Hajjou M, Rom W (2009) Wnt pathway in pulmonary fibrosis in the bleomycin mouse model. J Environ Pathol Toxicol Oncol 28:99–108PubMedGoogle Scholar
  23. 23.
    Königshoff M, Balsara N, Pfaff EM, Kramer M, Chrobak I, Seeger W, Eickelberg O (2008) Functional Wnt signaling is increased in idiopathic pulmonary fibrosis. PLoS One 3:e2142PubMedCrossRefGoogle Scholar
  24. 24.
    Chang W, Wei K, Jacobs SS, Upadhyay D, Weill D, Rosen GD (2010) SPARC suppresses apoptosis of idiopathic pulmonary fibrosis through constitutive activation of β-catenin. J Biol Chem 285:8196–8206PubMedCrossRefGoogle Scholar
  25. 25.
    Miyahara T, Hamanaka K, Weber DS, Drake DA, Anghelescu M, Parker JC (2007) Phosphoinositide 3-kinase, Src, and Akt modulate acute ventilation-induced vascular permeability increases in mouse lungs. Am J Physiol Lung Cell Mol Physiol 293:L11–L21PubMedCrossRefGoogle Scholar
  26. 26.
    Ward AP (2010) Oxidative stress: acute and progressive lung injury. Ann N Y Acad Sci 1203:53–59PubMedCrossRefGoogle Scholar
  27. 27.
    Kasper M, Haroske G (1996) Alterations in the alveolar epithelium after injury leading to pulmonary fibrosis. Histol Histopathol 11:463–483PubMedGoogle Scholar
  28. 28.
    Visscher DW, Myers JL (2006) Histologic spectrum of idiopathic interstitial pneumonias. Proc Am Thorac Soc 3:322–329PubMedCrossRefGoogle Scholar
  29. 29.
    Yerrapureddy A, Tobias J, Margulies SS (2010) Cyclic stretch magnitude and duration affect rat alveolar epithelial gene expression. Cell Physiol Biochem 25:113–122PubMedCrossRefGoogle Scholar
  30. 30.
    Chen P, Abacherli LE, Nadler ST, Wang Y, Li Q, Parks WC (2009) MMP7 shedding of syndecan-1 facilitates re-epithelialization by affecting alpha(2)beta(1) integrin activation. PLoS One 4:e6565PubMedCrossRefGoogle Scholar
  31. 31.
    Manicone AM, Huizar I, McGuire JK (2009) Matrilysin (matrix metalloproteinase-7) regulates anti-inflammatory and antifibrotic pulmonary dendritic cells that express CD103 (alpha(E)beta(7)-integrin). Am J Pathol 175:2319–2331PubMedCrossRefGoogle Scholar
  32. 32.
    Negrini D, Tenstad O, Passi A, Wiig H (2006) Differential degradation of matrix proteoglycans and edema development in rabbit lung. Am J Physiol Lung Cell Mol Physiol 290:L470–L477PubMedCrossRefGoogle Scholar
  33. 33.
    Cosgrove GP, du Bois RM (2008) Matrix metalloproteinase-7 expression in fibrosing lung disease. Restoring the balance. Chest 133:1058–1060PubMedCrossRefGoogle Scholar
  34. 34.
    Moriondo A, Pelosi P, Passi A, Viola M, Marcozzi C, Severgnini P, Ottani V, Quaranta M, Negrini D (2007) Proteoglycan fragmentation and respiratory mechanics in mechanically ventilated healthy rats. J Appl Physiol 103:747–756PubMedCrossRefGoogle Scholar
  35. 35.
    Henderson WR Jr, Chi EY, Ye X, Nguyen C, Tien YT, Zhou B, Borok Z, Knight DA, Kahn M (2010) Inhibition of Wnt/beta-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc Nat Acad Sci USA 107:14309–14314CrossRefGoogle Scholar
  36. 36.
    Jenei V, Sherwood V, Howlin J, Linnskog R, Säfholm A, Axelsson L, Andersson T (2009) A t-butyloxycarbonyl-modified Wnt5a-derived hexapeptide functions as a potent antagonist of Wnt5a-dependent melanoma cell invasion. Proc Natl Acad Sci USA 106:19473–19478PubMedCrossRefGoogle Scholar

Copyright information

© Copyright jointly held by Springer and ESICM 2011

Authors and Affiliations

  • Jesús Villar
    • 1
    • 2
    • 3
    Email author
  • Nuria E. Cabrera
    • 1
    • 2
  • Milena Casula
    • 1
    • 2
  • Francisco Valladares
    • 1
    • 4
  • Carlos Flores
    • 1
    • 5
  • Josefina López-Aguilar
    • 1
    • 6
  • Lluis Blanch
    • 1
    • 6
  • Haibo Zhang
    • 3
  • Robert M. Kacmarek
    • 7
  • Arthur S. Slutsky
    • 3
    • 8
    • 9
  1. 1.CIBER de Enfermedades RespiratoriasInstituto de Salud Carlos IIIMadridSpain
  2. 2.Multidisciplinary Organ Dysfunction Evaluation Research Network, Research UnitHospital Universitario Dr. NegrinLas Palmas de Gran CanariaSpain
  3. 3.Keenan Research Center at the Li Ka Shing Knowledge Institute of St. Michael’s HospitalTorontoCanada
  4. 4.Department of Anatomy, Pathology and HistologyUniversity of La LagunaTenerifeSpain
  5. 5.Research UnitHospital Universitario N.S. de CandelariaTenerifeSpain
  6. 6.Critical Care Center, Corporació Sanitaria Parc TaulíSabadellSpain
  7. 7.Department of Respiratory CareMassachusetts General HospitalBostonUSA
  8. 8.Interdepartmental Division of Critical Care MedicineUniversity of TorontoTorontoCanada
  9. 9.King Saud UniversityRiyadhSaudi Arabia

Personalised recommendations