Intensive Care Medicine

, Volume 37, Issue 4, pp 695–700 | Cite as

Mechanical influences on fluid leakage past the tracheal tube cuff in a benchtop model

  • Islem Ouanes
  • Aissam Lyazidi
  • Pierre Eric Danin
  • Nerlep Rana
  • Annalisa Di Bari
  • Fekri Abroug
  • Bruno Louis
  • Laurent BrochardEmail author



High-volume low-pressure (HVLP) cuffs on endotracheal tubes do not fully protect the lower airway from leakage of potentially contaminated secretions down the longitudinal folds within the cuff. Here, our purpose was to evaluate potential effects of positive end-expiratory pressure (PEEP), inspiratory effort intensity, and tube characteristics on fluid leakage past the cuff.


This benchtop study at a research laboratory used a tracheal tube inserted into an artificial Plexiglas trachea connected to a ventilator and lung model. Methylene blue was deposited above the tube cuff to simulate subglottic secretions. Five PEEP levels (0, 5, 10, 15, and 20 cmH2O) were tested with volume-controlled ventilation and three simulated inspiratory effort levels with pressure-support ventilation. Several cuff materials and tube sizes were tested.


The leakage occurrence rate ranged from 91% with zero PEEP to 8% with 15 and 20 cmH2O PEEP and was indirectly proportional to the PEEP level with significant correlation (R 2 = 0.39, p < 0.001), an effect not explained by higher peak inspiratory pressure. Low, moderate, and high inspiratory effort intensities were associated with 38%, 46%, and 75% leakage rates, respectively (p = 0.024). Leakage flow was considerably less with polyurethane than with polyvinylchloride tubes (mean 0.5 versus 31.8 ml/h). Leakage increased with larger tube diameters.


This benchtop study shows that PEEP and a polyurethane cuff prevent leakage past the endotracheal tube cuff, whereas greater inspiratory effort and larger tube diameters for given tracheal size induce or worsen leakage.


Endotracheal tube Benchtop model PEEP Ventilator-associated pneumonia Pressure-support ventilation 

Supplementary material

134_2011_2145_MOESM1_ESM.doc (294 kb)
Supplementary material 1 (DOC 294 kb)


  1. 1.
    Rello J, Sonora R, Jubert P, Artigas A, Rue M, Valles J (1996) Pneumonia in intubated patients: role of respiratory airway care. Am J Respir Crit Care Med 154:111–115PubMedGoogle Scholar
  2. 2.
    Seegobin RD, van Hasselt GL (1986) Aspiration beyond endotracheal cuffs. Can Anaesth Soc J 33:273–279CrossRefPubMedGoogle Scholar
  3. 3.
    (2005) Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 171:388–416Google Scholar
  4. 4.
    Dodek P, Keenan S, Cook D, Heyland D, Jacka M, Hand L, Muscedere J, Foster D, Mehta N, Hall R, Brun-Buisson C (2004) Evidence-based clinical practice guideline for the prevention of ventilator-associated pneumonia. Ann Intern Med 141:305–313PubMedGoogle Scholar
  5. 5.
    Young PJ, Rollinson M, Downward G, Henderson S (1997) Leakage of fluid past the tracheal tube cuff in a benchtop model. Br J Anaesth 78:557–562PubMedGoogle Scholar
  6. 6.
    Dullenkopf A, Schmitz A, Frei M, Gerber AC, Weiss M (2004) Air leakage around endotracheal tube cuffs. Eur J Anaesthesiol 21:448–453PubMedGoogle Scholar
  7. 7.
    Dullenkopf A, Gerber A, Weiss M (2003) Fluid leakage past tracheal tube cuffs: evaluation of the new Microcuff endotracheal tube. Intensive Care Med 29:1849–1853CrossRefPubMedGoogle Scholar
  8. 8.
    Blunt MC, Young PJ, Patil A, Haddock A (2001) Gel lubrication of the tracheal tube cuff reduces pulmonary aspiration. Anesthesiology 95:377–381CrossRefPubMedGoogle Scholar
  9. 9.
    Brad A, Janson BS, Thomas J, Poulton MD (1986) Does PEEP reduce the incidence of aspiration around endotracheal tubes? Can Anaesth Soc J 33:157–161CrossRefGoogle Scholar
  10. 10.
    Ouanes I, Rana N, Lyazidi A, Thille A, Brochard L (2008) Influences mécaniques sur la fuite liquidienne autour de la sonde d’intubation: “étude sur banc”. Réanimation 17(Suppl 1):S1–S240Google Scholar
  11. 11.
    Thille AW, Lyazidi A, Richard JC, Galia F, Brochard L (2009) A bench study of intensive-care-unit ventilators: new versus old and turbine-based versus compressed gas-based ventilators. Intensive Care Med 35:1368–1376CrossRefPubMedGoogle Scholar
  12. 12.
    Manzano F, Fernandez-Mondejar E, Colmenero M, Poyatos ME, Rivera R, Machado J, Catalan I, Artigas A (2008) Positive-end expiratory pressure reduces incidence of ventilator-associated pneumonia in nonhypoxemic patients. Crit Care Med 36:2225–2231CrossRefPubMedGoogle Scholar
  13. 13.
    van Kaam AH, Lachmann RA, Herting E, De Jaegere A, van Iwaarden F, Noorduyn LA, Kok JH, Haitsma JJ, Lachmann B (2004) Reducing atelectasis attenuates bacterial growth and translocation in experimental pneumonia. Am J Respir Crit Care Med 169:1046–1053CrossRefPubMedGoogle Scholar
  14. 14.
    Lucangelo U, Zin WA, Antonaglia V, Petrucci L, Viviani M, Buscema G, Borelli M, Berlot G (2008) Effect of positive expiratory pressure and type of tracheal cuff on the incidence of aspiration in mechanically ventilated patients in an intensive care unit. Crit Care Med 36:409–413CrossRefPubMedGoogle Scholar
  15. 15.
    Lorente L, Lecuona M, Jimenez A, Mora ML, Sierra A (2007) Influence of an endotracheal tube with polyurethane cuff and subglottic secretion drainage on pneumonia. Am J Respir Crit Care Med 176:1079–1083CrossRefPubMedGoogle Scholar
  16. 16.
    Poelaert J, Depuydt P, De Wolf A, Van de Velde S, Herck I, Blot S (2008) Polyurethane cuffed endotracheal tubes to prevent early postoperative pneumonia after cardiac surgery: a pilot study. J Thorac Cardiovasc Surg 135:771–776CrossRefPubMedGoogle Scholar
  17. 17.
    Mehta S, Myat HM (1984) The cross-sectional shape and circumference of the human trachea. Ann R Coll Surg Engl 66:356–358PubMedGoogle Scholar
  18. 18.
    Orozco-Levi M, Torres A, Ferrer M, Piera C, el-Ebiary M, de la Bellacasa JP, Rodriguez-Roisin R (1995) Semirecumbent position protects from pulmonary aspiration but not completely from gastroesophageal reflux in mechanically ventilated patients. Am J Respir Crit Care Med 152:1387–1390PubMedGoogle Scholar
  19. 19.
    Beuret P, Carton MJ, Nourdine K, Kaaki M, Ducreux JC (2008) Effect of semi-recumbent and prone positions on aspiration around the cuff of tracheal tubes. Ann Fr Anesth Reanim 27:755–756PubMedGoogle Scholar
  20. 20.
    Bassi GL, Zanella A, Cressoni M, Stylianou M, Kolobow T (2008) Following tracheal intubation, mucus flow is reversed in the semirecumbent position: possible role in the pathogenesis of ventilator-associated pneumonia. Crit Care Med 36:518–525CrossRefPubMedGoogle Scholar
  21. 21.
    Valles J, Artigas A, Rello J, Bonsoms N, Fontanals D, Blanch L, Fernandez R, Baigorri F, Mestre J (1995) Continuous aspiration of subglottic secretions in preventing ventilator-associated pneumonia. Ann Intern Med 122:179–186PubMedGoogle Scholar
  22. 22.
    Muscedere J, Dodek P, Keenan S, Fowler R, Cook D, Heyland D (2008) Comprehensive evidence-based clinical practice guidelines for ventilator-associated pneumonia: prevention. J Crit Care 23:126–137CrossRefPubMedGoogle Scholar
  23. 23.
    Guyton DC, Barlow MR, Besselievre TR (1997) Influence of airway pressure on minimum occlusive endotracheal tube cuff pressure. Crit Care Med 25:91–94CrossRefPubMedGoogle Scholar

Copyright information

© Copyright jointly held by Springer and ESICM 2011

Authors and Affiliations

  • Islem Ouanes
    • 1
    • 2
  • Aissam Lyazidi
    • 2
    • 3
  • Pierre Eric Danin
    • 2
  • Nerlep Rana
    • 2
  • Annalisa Di Bari
    • 2
  • Fekri Abroug
    • 1
  • Bruno Louis
    • 3
    • 4
  • Laurent Brochard
    • 2
    • 3
    • 4
    • 5
    Email author
  1. 1.Intensive Care UnitFattouma Bourguiba University HospitalMonastirTunisia
  2. 2.Medical Intensive Care UnitAP-HP, Henri Mondor HospitalCreteilFrance
  3. 3.Université PARIS ESTCréteilFrance
  4. 4.INSERM Unit No. 955CréteilFrance
  5. 5.Intensive Care UnitHôpitaux Universitaires de GenèveGeneva 14Switzerland

Personalised recommendations