Advertisement

Intensive Care Medicine

, Volume 37, Issue 1, pp 132–140 | Cite as

Effects of different mechanical ventilation strategies on the mucociliary system

  • Vivien S. PiccinEmail author
  • Christiane Calciolari
  • Kelly Yoshizaki
  • Susimeire Gomes
  • Cláudia Albertini-Yagi
  • Marisa Dolhnikoff
  • Mariângela Macchione
  • Elia G. Caldini
  • Paulo H. N. Saldiva
  • Elnara M. Negri
Experimental

Abstract

Objective

To evaluate the effects of different mechanical ventilation (MV) strategies on the mucociliary system.

Design and setting

Experimental study.

Subjects

Twenty-seven male New Zealand rabbits.

Interventions

After anesthesia, animals were tracheotomized and ventilated with standard ventilation [tidal volume (Vt) 8 ml/kg, positive end expiratory pressure (PEEP) 5 cmH2O, flow 3 L/min, FiO2 0.4] for 30 min. Next, animals were randomized into three groups and ventilated for 3 h with low volume (LV): Vt 8 ml/kg, PEEP 5 cmH2O, flow 3 L/min (n = 6); high volume (HV): Vt 16 ml/kg, PEEP 5 cmH2O, flow 5 L/min (n = 7); or high pressure (HP): Ppeak 30 cmH2O, PEEP 12 cmH2O (n = 8). Six animals (controls) were ventilated for 10 min with standard ventilation. Vital signals, blood lactate, and respiratory system mechanics were verified. Tracheal tissue was collected before and after MV.

Measurements

Lung and tracheal tissue sections were stained to analyze inflammation and mucosubstances by the point-counting method. Electron microscopy verified tracheal cell ultrastructure. In situ tracheal ciliary beating frequency (CBF), determined using a videoscopic technique, and tracheal mucociliary transport (TMCT), assessed by stereoscopic microscope, were evaluated before and after MV.

Results

Respiratory compliance decreased in the HP group. The HV and HP groups showed higher lactate levels after MV. Macroscopy showed areas of atelectasis and congestion on HV and HP lungs. Lung inflammatory infiltrate increased in all ventilated groups. Compared to the control, ventilated animals also showed a reduction of total and acid mucus on tracheal epithelium. Under electron microscopy, injury was observed in the ciliated cells of the HP group. CBF decreased significantly after MV only in the HP group. TMCT did not change significantly in the ventilated groups.

Conclusions

Different MV strategies induce not only distal lung alterations but also morphological and physiological tracheal alterations leading to mucociliary system dysfunction.

Keywords

Mucociliary clearance Mucus Cilia Mechanical ventilation Ventilator-induced lung injury 

Notes

Acknowledgments

The authors wish to thank Maria Ires Amorim Mendes for her assistance with the histological procedures, Erick Darío León Bueno de Camargo for his technical support, and Dr. Geraldo Lorenzi-Filho for his critical comments on the manuscript. This research was supported by FAPESP, the Fundação de Amparo à Pesquisa do Estado de São Paulo (Sao Paulo State Foundation, Process 06/50725-8) and Medical Investigation Laboratories of the FMUSP (LIM 5, LIM 9, LIM 51, and LIM 59).

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

134_2010_2056_MOESM1_ESM.doc (1.1 mb)
Supplementary material 1 (DOC 1114 kb)

Supplementary material 2 (MPG 7658 kb)

References

  1. 1.
    Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323PubMedGoogle Scholar
  2. 2.
    Lionetti V, Recchia FA, Ranieri VM (2005) Overview of ventilator-induced lung injury mechanisms. Curr Opin Crit Care 11:82–86CrossRefPubMedGoogle Scholar
  3. 3.
    Chu EK, Whitehead T, Slutsky AS (2004) Effects of cyclic opening and closing at low and high volume ventilation on bronchoalveolar lavage cytokines. Crit Care Med 32:168–174. doi: 10.1097/01.CCM.0000104203.20830.AE CrossRefPubMedGoogle Scholar
  4. 4.
    Graf J, Marini JJ (2008) Do airway secretions play an underappreciated role in acute respiratory distress syndrome? Curr Opin Crit Care 14:44–49. doi: 10.1097/MCC.0b013e3282f2f4cb CrossRefPubMedGoogle Scholar
  5. 5.
    Joki S, Saano V (1994) Ciliary beat frequency at six levels of the respiratory tract in cow, dog, guinea-pig, pig, rabbit and rat. Clin Exp Pharmacol Physiol 21:427–434. doi: 10.1111/j.1440-1681.1995.tb02076.x CrossRefPubMedGoogle Scholar
  6. 6.
    Chilvers MA, O’Callaghan C (2000) Local mucociliary defence mechanisms. Paediatr Respir Rev 1:27–34. doi: 10.1053/prrv.2000.0009 CrossRefPubMedGoogle Scholar
  7. 7.
    Girod S, Zahm J-M, Plotkowski C, Beck G, Puchelle E (1992) Role of the physicochemical properties of mucus in the protection of the respiratory epithelium. Eur Respir J 5:477–487PubMedGoogle Scholar
  8. 8.
    Lorenzi G, Böhm GM, Guimarães ET, Costa Vaz MA, King M, Saldiva PHN (1992) Correlation between rheologic properties and in vitro ciliary transport of rat nasal mucus. Biorheology 29:433–440PubMedGoogle Scholar
  9. 9.
    Conrad SA, Zhang S, Arnold TC, Scott K, Carden DL (2005) Protective effects of low respiratory frequency in experimental ventilator-associated lung injury. Crit Care Med 33:835–840. doi: 10.1097/01.CCM.0000159532.56865.8A CrossRefPubMedGoogle Scholar
  10. 10.
    Ricard J-D, Dreyfuss D, Saumon G (2003) Ventilator-induced lung injury. Eur Respir J 22:2–9. doi: 10.1183/09031936.03.00420103 CrossRefGoogle Scholar
  11. 11.
    Ferrer R, Pont T, de Latorre FJ (2001) Airway colonization in intubated patients. Clin Pulm Med 8:207–213CrossRefGoogle Scholar
  12. 12.
    Matsui H, Wagner VE, Hill DB, Schwab UE, Rogers TD, Button B, Taylor RM 2nd, Superfine R, Rubinstein M, Iglewski BH, Boucher RC (2006) A physical linkage between cystic fibrosis airway surface dehydration and Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A 103:18131–18136. doi: 10.1073/pnas.0606428103 CrossRefPubMedGoogle Scholar
  13. 13.
    Nakagawa NK, Macchione M, Petrolino HM, Guimarães ET, King M, Saldiva PHN, Lorenzi-Filho G (2000) Effects of a heat and moisture exchanger and a heated humidifier on respiratory mucus in patients undergoing mechanical ventilation. Crit Care Med 2:312–317CrossRefGoogle Scholar
  14. 14.
    Williams R, Rankin N, Smith T, Galler D, Seakins P (1996) Relationship between the humidity and temperature of inspired gas and the function of the airway mucosa. Crit Care Med 24:1920–1929CrossRefPubMedGoogle Scholar
  15. 15.
    Jones R, Reid L (1978) Secretory cells and their glycoproteins in health and disease. Br Med Bull 34:9–16PubMedGoogle Scholar
  16. 16.
    Weibel ER (1990) Morphometry: stereological theory and practical methods. In: Gil J (ed) Models of lung disease, 1st ed. Dekker, New York, pp 199–252Google Scholar
  17. 17.
    Braga PC (1988) In vivo observation and counting methods for ciliary motion. In: Braga PC, Allegra L (eds) Methods in bronchial mucology. Raven Press, New York, pp 269–276Google Scholar
  18. 18.
    Rivero DHRF, Lorenzi-Filho G, Pazetti R, Jatene FB, Saldiva PHN (2001) Effects of bronchial transection and reanastomosis on mucociliary system. Chest 119:1510–1515. doi: 10.1378/chest.119.5.1510 CrossRefPubMedGoogle Scholar
  19. 19.
    Carvalho-Oliveira R, Saiki M, Pires-Neto RC, Lorenzi-Filho G, Macchione M, Saldiva PHN (2005) Anti-oxidants reduce the acute adverse effects of residual oil fly ash on the frog palate mucociliary epithelium. Environ Res 98:349–354. doi: 10.1016/j.envres.2004.10.002 CrossRefPubMedGoogle Scholar
  20. 20.
    Pazetti R, Pêgo-Fernandes PM, Lorenzi-Filho G, Saldiva PH, Moreira LF, Jatene FB (2008) Effects of cyclosporine A and bronchial transection on mucociliary transport in rats. Ann Thorac Surg 85:1925–1929. doi: 10.1016/j.athoracsur.2008.02.084 CrossRefPubMedGoogle Scholar
  21. 21.
    Trindade SHK, Mello Júnior JF, Mion OG, Lorenzi-Filho G, Macchione M, Guimarães ET, Saldiva PHN (2007) Methods for studying mucociliary transport. Rev Bras Otorrinolaringol 73:704–712. doi: 10.1590/S0034-72992007000500018 Google Scholar
  22. 22.
    Macchione M, Guimarães ET, Saldiva PH, Lorenzi-Filho G (1995) Methods for studying respiratory mucus and mucus clearance. Braz J Med Biol Res 28:1347–1355PubMedGoogle Scholar
  23. 23.
    Gatto LA (1993) Cholinergic and adrenergic stimulation of mucociliary transport in the rat trachea. Respir Physiol 92:209–217. doi: 10.1016/0034-5687(93)90039-D CrossRefPubMedGoogle Scholar
  24. 24.
    Macchione M, Lorenzi-Filho G, Guimaraes ET, Junqueira VB, Saldiva PHN (1998) The use of the frog palate preparation to assess the effects of oxidants on ciliated epithelium. Free Radic Biol Med 24:714–721. doi: 10.1016/S0891-5849(97)00332-8 CrossRefPubMedGoogle Scholar
  25. 25.
    Lippmann M, Yeates DB, Albert RE (1980) Deposition, retention, and clearance of inhaled particles. Br J Ind Med 37:337–362PubMedGoogle Scholar
  26. 26.
    Peatfield AC, Richardson PS (1983) The action of dust in the airways on secretion into the trachea of cat. J Physiol 342:327–334PubMedGoogle Scholar
  27. 27.
    Verdugo P (1990) Goblet cells secretion and mucogenesis. Annu Rev Physiol 52:157–176. doi: 10.1146/annurev.ph.52.030190.001105 CrossRefPubMedGoogle Scholar
  28. 28.
    Chess PR, O’Reilly MA, Sachs F, Finkelstein JN (2005) Reactive oxidant and p42/44 MAP kinase signaling is necessary for mechanical strain induced proliferation in pulmonary epithelial cells. J Appl Physiol 99:1226–1232. doi: 10.1152/japplphysiol.01105.2004 CrossRefPubMedGoogle Scholar
  29. 29.
    Chapman KE, Sinclair SE, Zhuang D, Hassid A, Desai LP, Waters CM (2005) Cyclic mechanical strain increases reactive oxygen species production in pulmonary epithelial cells. Am J Physiol Lung Cell Mol Physiol 289:L834–L841. doi: 10.1152/ajplung.00069.2005 CrossRefPubMedGoogle Scholar
  30. 30.
    Papaiahgari S, Yerrapureddy A, Hassoun PM, Garcia JG, Birukov KG, Reddy SP (2007) EGFR-activated signaling and actin remodeling regulate cyclic stretch-induced NRF2-ARE activation. Am J Respir Cell Mol Biol 36:304–312. doi: 10.1165/rcmb.2006-0131OC CrossRefPubMedGoogle Scholar
  31. 31.
    Boat TF, Kleinerman JI, Fanaroff AA, Matthews LW (1973) Toxic effects of oxygen on cultured human neonatal respiratory epithelium. Pediatr Res 7:607–615CrossRefPubMedGoogle Scholar
  32. 32.
    Wiswell TE, Wiswell SH (1990) The effect of 100% oxygen on the propagation of tracheobronchial injury during high-frequency and conventional mechanical ventilation. Am J Dis Child 144:560–564PubMedGoogle Scholar
  33. 33.
    Cotran RS, Kumar V, Robbins SL (1991) Lesão e adaptação celulares. In: Cotran RS, Kumar V, Robbins SL (eds) Robbins patologia estrutural e funcional, 4th ed. Guanabara Koogan, Rio de JaneiroGoogle Scholar
  34. 34.
    Trawoger R, Kolobow T, Cereda M, Sparacino ME (1997) Tracheal mucus velocity remains normal in healthy sheep intubated with a new endotracheal tube with a novel laryngeal seal. Anesthesiology 86:1140–1144CrossRefPubMedGoogle Scholar
  35. 35.
    Gheber L, Korngreen A, Priel Z (1998) Effect of viscosity on metachrony in mucus propelling cilia. Cell Motil Cytoskeleton 39:9–20. doi: 10.1002/(SICI)1097-0169(1998)39:1<9:AID-CM2>3.0.CO;2-3 CrossRefPubMedGoogle Scholar
  36. 36.
    Ballard ST, Trout L, Mehta A, Inglis SK (2002) Liquid secretion inhibitors reduce mucociliary transport in glandular airways. Am J Physiol Lung Cell Mol Physiol 283:L329–L335. doi: 10.1152/ajplung.00277.2001 PubMedGoogle Scholar
  37. 37.
    Konrad F, Schiener R, Marx T, Georgieff M (1995) Ultrastructure and mucociliary transport of bronchial respiratory epithelium in intubated patients. Intensive Care Med 21:482–489. doi: 10.1007/BF01706201 CrossRefPubMedGoogle Scholar
  38. 38.
    Konrad F, Schreiber T, Brecht-Kraus D, Georgieff M (1994) Mucociliary transport in ICU patients. Chest 105:237–241CrossRefPubMedGoogle Scholar
  39. 39.
    Teff Z, Priel Z, Gheber LA (2008) The forces applied by cilia depend linearly on their frequency due to constant geometry of the effective stroke. Biophys J 94:298–305. doi: 10.1529/biophysj.107.111724 CrossRefPubMedGoogle Scholar
  40. 40.
    Albertini-Yagi CS, Oliveira RC, Vieira JE, Negri EM, de Oliveira LR, Saldiva PH, Lorenzi-Filho G (2005) Sputum induction as a research tool for the study of human respiratory mucus. Respir Physiol Neurobiol 145:101–110. doi: 10.1016/j.resp.2004.08.010 CrossRefPubMedGoogle Scholar
  41. 41.
    Suzuki S, Hotchkiss JR, Takahashi T, Olson D, Adams AB, Marini JJ (2004) Effect of core body temperature on ventilator-induced lung injury. Crit Care Med 32:144–149. doi: 10.1097/01.CCM.0000098857.14923.44 CrossRefPubMedGoogle Scholar

Copyright information

© Copyright jointly held by Springer and ESICM 2010

Authors and Affiliations

  • Vivien S. Piccin
    • 1
    Email author
  • Christiane Calciolari
    • 1
  • Kelly Yoshizaki
    • 1
  • Susimeire Gomes
    • 2
  • Cláudia Albertini-Yagi
    • 1
  • Marisa Dolhnikoff
    • 1
  • Mariângela Macchione
    • 1
  • Elia G. Caldini
    • 1
  • Paulo H. N. Saldiva
    • 1
  • Elnara M. Negri
    • 1
  1. 1.Department of PathologyUniversity of São Paulo School of MedicineSão PauloBrazil
  2. 2.Respiratory Intensive Care UnitUniversity of São Paulo School of MedicineSão PauloBrazil

Personalised recommendations