Intensive Care Medicine

, Volume 37, Issue 2, pp 263–271 | Cite as

Neurally adjusted ventilatory assist improves patient–ventilator interaction

  • Lise Piquilloud
  • Laurence Vignaux
  • Emilie Bialais
  • Jean Roeseler
  • Thierry Sottiaux
  • Pierre-François Laterre
  • Philippe Jolliet
  • Didier Tassaux
Original

Abstract

Purpose

To determine if, compared with pressure support (PS), neurally adjusted ventilatory assist (NAVA) reduces trigger delay, inspiratory time in excess, and the number of patient–ventilator asynchronies in intubated patients.

Methods

Prospective interventional study in spontaneously breathing patients intubated for acute respiratory failure. Three consecutive periods of ventilation were applied: (1) PS1, (2) NAVA, (3) PS2. Airway pressure, flow, and transesophageal diaphragmatic electromyography were continuously recorded.

Results

All results are reported as median (interquartile range, IQR). Twenty-two patients were included, 36.4% (8/22) having obstructive pulmonary disease. NAVA reduced trigger delay (ms): NAVA, 69 (57–85); PS1, 178 (139–245); PS2, 199 (135–256). NAVA improved expiratory synchrony: inspiratory time in excess (ms): NAVA, 126 (111–136); PS1, 204 (117–345); PS2, 220 (127–366). Total asynchrony events were reduced with NAVA (events/min): NAVA, 1.21 (0.54–3.36); PS1, 3.15 (1.18–6.40); PS2, 3.04 (1.22–5.31). The number of patients with asynchrony index (AI) >10% was reduced by 50% with NAVA. In contrast to PS, no ineffective effort or late cycling was observed with NAVA. There was less premature cycling with NAVA (events/min): NAVA, 0.00 (0.00–0.00); PS1, 0.14 (0.00–0.41); PS2, 0.00 (0.00–0.48). More double triggering was seen with NAVA, 0.78 (0.46–2.42); PS1, 0.00 (0.00–0.04); PS2, 0.00 (0.00–0.00).

Conclusions

Compared with standard PS, NAVA can improve patient–ventilator synchrony in intubated spontaneously breathing intensive care patients. Further studies should aim to determine the clinical impact of this improved synchrony.

Keywords

Mechanical ventilation Patient–ventilator interaction Neurally adjusted ventilatory assist Pressure support Partial ventilatory assist 

Notes

Acknowledgments

The authors wish to thank the Lancardis Foundation for its financial support, and Dr. Angèle Gayet-Ageron, Division of Clinical Epidemiology, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Switzerland for her invaluable help with statistics.

Supplementary material

134_2010_2052_MOESM1_ESM.doc (47 kb)
Supplementary material 1 (DOC 47 kb)

References

  1. 1.
    Carson SS, Cox CE, Holmes GM, Howard A, Carey TS (2006) The changing epidemiology of mechanical ventilation: a population-based study. J Intensive Care Med 21:173–182CrossRefPubMedGoogle Scholar
  2. 2.
    Needham DM, Bronskill SE, Sibbald WJ, Pronovost PJ, Laupacis A (2004) Mechanical ventilation in Ontario, 1992–2000: incidence, survival, and hospital bed utilization of noncardiac surgery adult patients. Crit Care Med 32:1504–1509CrossRefPubMedGoogle Scholar
  3. 3.
    Needham DM, Bronskill SE, Calinawan JR, Sibbald WJ, Pronovost PJ, Laupacis A (2005) Projected incidence of mechanical ventilation in Ontario to 2026: preparing for the aging baby boomers. Crit Care Med 33:574–579CrossRefPubMedGoogle Scholar
  4. 4.
    Esteban A, Anzueto A, Alia I, Gordo F, Apezteguia C, Palizas F, Cide D, Goldwaser R, Soto L, Bugedo G, Rodrigo C, Pimentel J, Raimondi G, Tobin MJ (2000) How is mechanical ventilation employed in the intensive care unit? An international utilization review. Am J Respir Crit Care Med 161:1450–1458PubMedGoogle Scholar
  5. 5.
    Rose L, Presneill JJ, Johnston L, Nelson S, Cade JF (2009) Ventilation and weaning practices in Australia and New Zealand. Anaesth Intensive Care 37:99–107PubMedGoogle Scholar
  6. 6.
    Girard TD, Kress JP, Fuchs BD, Thomason JW, Schweickert WD, Pun BT, Taichman DB, Dunn JG, Pohlman AS, Kinniry PA, Jackson JC, Canonico AE, Light RW, Shintani AK, Thompson JL, Gordon SM, Hall JB, Dittus RS, Bernard GR, Ely EW (2008) Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (awakening and breathing controlled trial): a randomised controlled trial. Lancet 371:126–134CrossRefPubMedGoogle Scholar
  7. 7.
    Kress JP, Pohlman AS, O’Connor MF, Hall JB (2000) Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med 342:1471–1477CrossRefPubMedGoogle Scholar
  8. 8.
    Schweickert WD, Gehlbach BK, Pohlman AS, Hall JB, Kress JP (2004) Daily interruption of sedative infusions and complications of critical illness in mechanically ventilated patients. Crit Care Med 32:1272–1276CrossRefPubMedGoogle Scholar
  9. 9.
    Larsson L, Li X, Edstrom L, Eriksson LI, Zackrisson H, Argentini C, Schiaffino S (2000) Acute quadriplegia and loss of muscle myosin in patients treated with non depolarizing neuromuscular blocking agents and corticosteroids: mechanisms at the cellular and molecular levels. Crit Care Med 28:34–45CrossRefPubMedGoogle Scholar
  10. 10.
    Garnacho-Montero J, Madrazo-Osuna J, Garcia-Garmendia JL, Ortiz-Leyba C, Jimenez-Jimenez FJ, Barrero-Almodovar A, Garnacho-Montero MC, Moyano-Del-Estad MR (2001) Critical illness polyneuropathy: risk factors and clinical consequences. A cohort study in septic patients. Intensive Care Med 27:1288–1296CrossRefPubMedGoogle Scholar
  11. 11.
    Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, Zhu J, Sachdeva R, Sonnad S, Kaiser LR, Rubinstein NA, Powers SK, Shrager JB (2008) Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 358:1327–1335CrossRefPubMedGoogle Scholar
  12. 12.
    Futier E, Constantin JM, Combaret L, Mosoni L, Roszyk L, Sapin V, Attaix D, Jung B, Jaber S, Bazin JE (2008) Pressure support ventilation attenuates ventilator-induced protein modifications in the diaphragm. Crit Care 12:R116CrossRefPubMedGoogle Scholar
  13. 13.
    Vassilakopoulos T, Petrof BJ (2004) Ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med 169:336–341CrossRefPubMedGoogle Scholar
  14. 14.
    Putensen C, Zech S, Wrigge H, Zinserling J, Stuber F, Von Spiegel T, Mutz N (2001) Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 164:43–49PubMedGoogle Scholar
  15. 15.
    Yamada Y, Du HL (2000) Analysis of the mechanisms of expiratory asynchrony in pressure support ventilation: a mathematical approach. J Appl Physiol 88:2143–2150PubMedGoogle Scholar
  16. 16.
    Tobin MJ, Jubran A, Laghi F (2001) Patient–ventilator interaction. Am J Respir Crit Care Med 163:1059–1063PubMedGoogle Scholar
  17. 17.
    MacIntyre N, Nishimura M, Usada Y, Tokioka H, Takezawa J, Shimada Y (1990) The Nagoya conference on system design and patient–ventilator interactions during pressure support ventilation. Chest 97:1463–1466CrossRefPubMedGoogle Scholar
  18. 18.
    Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L (2006) Patient–ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med 32:1515–1522CrossRefPubMedGoogle Scholar
  19. 19.
    Kondili E, Prinianakis G, Georgopoulos D (2003) Patient–ventilator interaction. Br J Anaesth 91:106–119CrossRefPubMedGoogle Scholar
  20. 20.
    Chao DC, Scheinhorn DJ, Stearn-Hassenpflug M (1997) Patient–ventilator trigger asynchrony in prolonged mechanical ventilation. Chest 112:1592–1599CrossRefPubMedGoogle Scholar
  21. 21.
    Sinderby C, Navalesi P, Beck J, Skrobik Y, Comtois N, Friberg S, Gottfried SB, Lindstrom L (1999) Neural control of mechanical ventilation in respiratory failure. Nat Med 5:1433–1436CrossRefPubMedGoogle Scholar
  22. 22.
    Piquilloud L, Vignaux L, Tassaux D, Jolliet P (2009) Can neurally adjusted ventilatory assist (NAVA) improve patient–ventilator interaction? A preliminary study. Intensive Care Med 35(Suppl 1):S21Google Scholar
  23. 23.
    Barwing J, Ambold M, Linden N, Quintel M, Moerer O (2009) Evaluation of the catheter positioning for neurally adjusted ventilatory assist. Intensive Care Med 35:1809–1814CrossRefPubMedGoogle Scholar
  24. 24.
    Vignaux L, Vargas F, Roeseler J, Tassaux D, Thille AW, Kossowsky MP, Brochard L, Jolliet P (2009) Patient–ventilator asynchrony during non-invasive ventilation for acute respiratory failure: a multicenter study. Intensive Care Med 35:840–846CrossRefPubMedGoogle Scholar
  25. 25.
    Colombo D, Cammarota G, Bergamaschi V, De Lucia M, Corte FD, Navalesi P (2008) Physiologic response to varying levels of pressure support and neurally adjusted ventilatory assist in patients with acute respiratory failure. Intensive Care Med 34:2010–2018CrossRefPubMedGoogle Scholar
  26. 26.
    Spahija J, de Marchie M, Albert M, Bellemare P, Delisle S, Beck J, Sinderby C (2010) Patient–ventilator interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med 38:518–526CrossRefPubMedGoogle Scholar
  27. 27.
    Tassaux D, Gainnier M, Battisti A, Jolliet P (2005) Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload. Am J Respir Crit Care Med 172:1283–1289CrossRefPubMedGoogle Scholar
  28. 28.
    Breatnach C, Conlon NP, Stack M, Healy M, O’Hare BP (2010) A prospective crossover comparison of neurally adjusted ventilatory assist and pressure-support ventilation in a pediatric and neonatal intensive care unit population. Pediatr Crit Care Med 11:7–11CrossRefPubMedGoogle Scholar
  29. 29.
    Whitelaw WA, Derenne JP, Milic-Emili J (1975) Occlusion pressure as a measure of respiratory center output in conscious man. Respir Physiol 23:181–199CrossRefPubMedGoogle Scholar
  30. 30.
    Sassoon CS, Gruer SE (1995) Characteristics of the ventilator pressure- and flow-trigger variables. Intensive Care Med 21:159–168CrossRefPubMedGoogle Scholar
  31. 31.
    Nava S, Bruschi C, Fracchia C, Braschi A, Rubini F (1997) Patient–ventilator interaction and inspiratory effort during pressure support ventilation in patients with different pathologies. Eur Respir J 10:177–183CrossRefPubMedGoogle Scholar
  32. 32.
    Nava S, Bruschi C, Rubini F, Palo A, Iotti G, Braschi A (1995) Respiratory response and inspiratory effort during pressure support ventilation in COPD patients. Intensive Care Med 21:871–879CrossRefPubMedGoogle Scholar
  33. 33.
    MacIntyre N (2010) Talk to me! Toward better patient–ventilator communication. Crit Care Med 38:714–715CrossRefPubMedGoogle Scholar
  34. 34.
    Jubran A, Van de Graaff WB, Tobin MJ (1995) Variability of patient–ventilator interaction with pressure support ventilation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 152:129–136PubMedGoogle Scholar
  35. 35.
    Parthasarathy S, Jubran A, Tobin MJ (1998) Cycling of inspiratory and expiratory muscle groups with the ventilator in airflow limitation. Am J Respir Crit Care Med 158:1471–1478PubMedGoogle Scholar
  36. 36.
    Stewart TE, Meade MO, Cook DJ, Granton JT, Hodder RV, Lapinsky SE, Mazer CD, McLean RF, Rogovein TS, Schouten BD, Todd TR, Slutsky AS (1998) Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. Pressure- and volume-limited ventilation strategy group. N Engl J Med 338:355–361CrossRefPubMedGoogle Scholar

Copyright information

© Copyright jointly held by Springer and ESICM 2010

Authors and Affiliations

  • Lise Piquilloud
    • 1
  • Laurence Vignaux
    • 1
  • Emilie Bialais
    • 2
  • Jean Roeseler
    • 2
  • Thierry Sottiaux
    • 3
  • Pierre-François Laterre
    • 2
  • Philippe Jolliet
    • 4
  • Didier Tassaux
    • 1
  1. 1.Intensive Care Unit, Clinical Research Laboratory, University Hospital, Faculty of Medicine, University of GenevaGeneva 14Switzerland
  2. 2.Intensive Care UnitUniversity Hospital St.-LucBrusselsBelgium
  3. 3.Intensive Care UnitClinique Notre Dame de GrâceGosseliesBelgium
  4. 4.Adult Intensive Care and Burn Unit, University Hospital, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland

Personalised recommendations