Intensive Care Medicine

, Volume 36, Issue 11, pp 1813–1825 | Cite as

Monitoring the microcirculation in the critically ill patient: current methods and future approaches

  • Daniel De Backer
  • Gustavo Ospina-Tascon
  • Diamantino Salgado
  • Raphaël Favory
  • Jacques Creteur
  • Jean-Louis Vincent
Review

Abstract

Purpose

To discuss the techniques currently available to evaluate the microcirculation in critically ill patients. In addition, the most clinically relevant microcirculatory alterations will be discussed.

Methods

Review of the literature on methods used to evaluate the microcirculation in humans and on microcirculatory alterations in critically ill patients.

Results

In experimental conditions, shock states have been shown to be associated with a decrease in perfused capillary density and an increase in the heterogeneity of microcirculatory perfusion, with non-perfused capillaries in close vicinity to perfused capillaries. Techniques used to evaluate the microcirculation in humans should take into account the heterogeneity of microvascular perfusion. Microvideoscopic techniques, such as orthogonal polarization spectral (OPS) and sidestream dark field (SDF) imaging, directly evaluate microvascular networks covered by a thin epithelium, such as the sublingual microcirculation. Laser Doppler and tissue O2 measurements satisfactorily detect global decreases in tissue perfusion but not heterogeneity of microvascular perfusion. These techniques, and in particular laser Doppler and near-infrared spectroscopy, may help to evaluate the dynamic response of the microcirculation to a stress test. In patients with severe sepsis and septic shock, the microcirculation is characterized by a decrease in capillary density and in the proportion of perfused capillaries, together with a blunted response to a vascular occlusion test.

Conclusions

The microcirculation in humans can be evaluated directly by videomicroscopy (OPS/SDF) or indirectly by vascular occlusion tests. Of note, direct videomicroscopic visualization evaluates the actual state of the microcirculation, whereas the vascular occlusion test evaluates microvascular reserve.

Keywords

Microcirculation Cardiac output Hemodynamic monitoring Capillaries Oxygen delivery Outcome 

References

  1. 1.
    Beach JM, McGahren ED, Duling BR (1998) Capillaries and arterioles are electrically coupled in hamster cheek pouch. Am J Physiol 275:H1489–H1496PubMedGoogle Scholar
  2. 2.
    Haglund U, Rasmussen I (1993) Oxygenation of the gut mucosa. Br J Surg 80:955–956PubMedCrossRefGoogle Scholar
  3. 3.
    Aird WC (2007) Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res 100:174–190PubMedCrossRefGoogle Scholar
  4. 4.
    Collins DM, McCullough WT, Ellsworth ML (1998) Conducted vascular responses: communication across the capillary bed. Microvasc Res 56:43–53PubMedCrossRefGoogle Scholar
  5. 5.
    Hangai-Hoger N, Nacharaju P, Manjula BN, Cabrales P, Tsai AG, Acharya SA, Intaglietta M (2006) Microvascular effects following treatment with polyethylene glycol-albumin in lipopolysaccharide-induced endotoxemia. Crit Care Med 34:108–117PubMedCrossRefGoogle Scholar
  6. 6.
    Bateman RM, Tokunaga C, Kareco T, Dorscheid DR, Walley KR (2007) Myocardial hypoxia-inducible HIF-1α, VEGF and GLUT1 gene expression is associated with microvascular and ICAM-1 heterogeneity during endotoxemia. Am J Physiol Heart Circ Physiol 293:H448–H456PubMedCrossRefGoogle Scholar
  7. 7.
    Farquhar I, Martin CM, Lam C, Potter R, Ellis CG, Sibbald WJ (1996) Decreased capillary density in vivo in bowel mucosa of rats with normotensive sepsis. J Surg Res 61:190–196PubMedCrossRefGoogle Scholar
  8. 8.
    Goldman D, Bateman RM, Ellis CG (2006) Effect of decreased O2 supply on skeletal muscle oxygenation and O2 consumption during sepsis: role of heterogeneous capillary spacing and blood flow. Am J Physiol Heart Circ Physiol 290:H2277–H2285PubMedCrossRefGoogle Scholar
  9. 9.
    Borgstrom P, Bruttig SP, Lindbom L, Intaglietta M, Arfors KE (1990) Microvascular responses in rabbit skeletal muscle after fixed volume hemorrhage. Am J Physiol 259:H190–H196PubMedGoogle Scholar
  10. 10.
    Kerger H, Waschke KF, Ackern KV, Tsai AG, Intaglietta M (1999) Systemic and microcirculatory effects of autologous whole blood resuscitation in severe hemorrhagic shock. Am J Physiol 276:H2035–H2043PubMedGoogle Scholar
  11. 11.
    Zuurbier CJ, van Iterson M, Ince C (1999) Functional heterogeneity of oxygen supply-consumption ratio in the heart. Cardiovasc Res 44:488–497PubMedCrossRefGoogle Scholar
  12. 12.
    Stein JC, Ellis CG, Ellsworth ML (1993) Relationship between capillary and systemic venous PO2 during nonhypoxic and hypoxic ventilation. Am J Physiol 265:H537–H542PubMedGoogle Scholar
  13. 13.
    Humer MF, Phang PT, Friesen BP, Allards MF, Goddard CM, Walley KR (1996) Heterogeneity of gut capillary transit times and impaired gut oxygen extraction in endotoxemic pigs. J Appl Physiol 81:895–904PubMedGoogle Scholar
  14. 14.
    Ince C, Vink H, Wieringa PA, Giezeman M, Spaan JA (1990) Heterogeneous NADH fluorescence during post-anoxic reactive hyperemia in saline perfused rat heart. Adv Exp Med Biol 277:477–482PubMedGoogle Scholar
  15. 15.
    Ellis CG, Bateman RM, Sharpe MD, Sibbald WJ, Gill R (2002) Effect of a maldistribution of microvascular blood flow on capillary O2 extraction in sepsis. Am J Physiol 282:H156–H164Google Scholar
  16. 16.
    Goldman D, Bateman RM, Ellis CG (2004) Effect of sepsis on skeletal muscle oxygen consumption and tissue oxygenation: interpreting capillary oxygen transport data using a mathematical model. Am J Physiol Heart Circ Physiol 287:H2535–H2544PubMedCrossRefGoogle Scholar
  17. 17.
    Rivers E, Nguyen B, Havstadt S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377PubMedCrossRefGoogle Scholar
  18. 18.
    Joly HR, Weil MH (1969) Temperature of the great toe as an indication of the severity of shock. Circulation 39:131–138PubMedGoogle Scholar
  19. 19.
    Boerma EC, Kuiper MA, Kingma WP, Egbers PH, Gerritsen RT, Ince C (2008) Disparity between skin perfusion and sublingual microcirculatory alterations in severe sepsis and septic shock: a prospective observational study. Intensive Care Med 34:1294–1298PubMedCrossRefGoogle Scholar
  20. 20.
    Lima A, Jansen TC, van Bommel J, Ince C, Bakker J (2009) The prognostic value of the subjective assessment of peripheral perfusion in critically ill patients. Crit Care Med 37:934–938PubMedCrossRefGoogle Scholar
  21. 21.
    De Backer D, Creteur J, Dubois MJ, Sakr Y, koch M, Verdant C, Vincent JL (2006) The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med 34:403–408PubMedCrossRefGoogle Scholar
  22. 22.
    Ospina-Tascon G, Neves AP, Occhipinti G, Donadello K, Buchele G, Simion D, Chierego M, Oliveira Silva T, Fonseca A, Vincent JL, De Backer D (2010) Effects of fluids on microvascular perfusion in patients with severe sepsis. Intensive Care Med 36:949–955PubMedCrossRefGoogle Scholar
  23. 23.
    Marechal X, Favory R, Joulin O, Montaigne D, Hassoun S, Decoster B, Zerimech F, Neviere R (2008) Endothelial glycocalyx damage during endotoxemia coincides with microcirculatory dysfunction and vascular oxidative stress. Shock 29:572–576PubMedGoogle Scholar
  24. 24.
    Duranteau J, Sitbon P, Teboul JL, Vicaut E, Anguel N, Richard C, Samii K (1999) Effects of epinephrine, norepinephrine, or the combination of norepinephrine and dobutamine on gastric mucosa in septic shock. Crit Care Med 27:893–900PubMedCrossRefGoogle Scholar
  25. 25.
    Boyle NH, Roberts PC, Ng B, Berkenstadt H, McLuckie A, Beale RJ, Mason RC (1999) Scanning laser Doppler is a useful technique to assess foot cutaneous perfusion during femoral artery cannulation. Crit Care 3:95–100PubMedCrossRefGoogle Scholar
  26. 26.
    Altintas MA, Altintas AA, Guggenheim M, Aust MC, Niederbichler AD, Knobloch K, Vogt PM (2010) Insight in microcirculation and histomorphology during burn shock treatment using in vivo confocal-laser-scanning microscopy. J Crit Care 25:1–7CrossRefGoogle Scholar
  27. 27.
    Altintas MA, Altintas AA, Guggenheim M, Steiert AE, Aust MC, Niederbichler AD, Herold C, Vogt PM (2009) Insight in human skin microcirculation using in vivo reflectance-mode confocal laser scanning microscopy. J Digit Imaging. doi:10.1007/s10278-009-9219-3 PubMedGoogle Scholar
  28. 28.
    Lamblin V, Favory R, Boulo M, Mathieu D (2006) Microcirculatory alterations induced by sedation in intensive care patients. Effects of midazolam alone and in association with sufentanil. Crit Care 10:R176PubMedCrossRefGoogle Scholar
  29. 29.
    Fagrell B, Fronek A, Intaglietta M (1977) A microscope-television system for studying flow velocity in human skin capillaries. Am J Physiol 233:H318–H321PubMedGoogle Scholar
  30. 30.
    Awan ZA, Wester T, Kvernebo K (2010) Human microvascular imaging: a review of skin and tongue videomicroscopy techniques and analysing variables. Clin Physiol Funct Imaging 30:79–88PubMedCrossRefGoogle Scholar
  31. 31.
    Sherman H, Klausner S, Cook WA (1971) Incident dark-field illumination: a new method for microcirculatory study. Angiology 22:295–303PubMedCrossRefGoogle Scholar
  32. 32.
    Slaaf DW, Tangelder GJ, Reneman RS, Jager K, Bollinger A (1987) A versatile incident illuminator for intravital microscopy. Int J Microcirc Clin Exp 6:391–397PubMedGoogle Scholar
  33. 33.
    Groner W, Winkelman JW, Harris AG, Ince C, Bouma GJ, Messmer K, Nadeau RG (1999) Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med 5:1209–1212PubMedCrossRefGoogle Scholar
  34. 34.
    Goedhart P, Khalilzada M, Bezemer R, Merza J, Ince C (2007) Sidestream dark field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Optics Express 15:15101–15114PubMedCrossRefGoogle Scholar
  35. 35.
    Harris AG, Sinitsina I, Messmer K (2001) Validation of OPS imaging for microvascular measurements during isovolumic hemodilution and low hematocrits. Am J Physiol Heart Circ Physiol 282:H1502–H1509Google Scholar
  36. 36.
    Laemmel E, Tadayoni R, Sinitsina I, Boczkowski J, and Vicaut E (2000) Using orthogonal polarization spectral imaging for the experimental study of microcirculation: comparison with intravital microscopy. In: Messmer K (ed) Orthogonal polarization spectral imaging—Progress in applied microcirculation, vol 26, pp 50–60. Basel, KargerGoogle Scholar
  37. 37.
    Harris AG, Sinitsina I, Messmer K (2000) The Cytoscan™ Model E-II, a new reflectance microscope for intravital microscopy: comparison with the standard fluorescence method. J Vasc Res 37:469–476PubMedCrossRefGoogle Scholar
  38. 38.
    Mathura KR, Vollebregt KC, Boer K, De Graaff JC, Ubbink DT, Ince C (2001) Comparison of OPS imaging and conventional capillary microscopy to study the human microcirculation. J Appl Physiol 91:74–78PubMedGoogle Scholar
  39. 39.
    Pennings FA, Ince C, Bouma GJ (2006) Continuous real-time visualization of the human cerebral microcirculation during arteriovenous malformation surgery using orthogonal polarization spectral imaging. Neurosurgery 59:167–171PubMedCrossRefGoogle Scholar
  40. 40.
    den Uil CA, Bezemer R, Miranda DR, Ince C, Lagrand WK, Hartman M, Bogers AJ, Spronk PE, Simoons ML (2009) Intra-operative assessment of human pulmonary alveoli in vivo using sidestream dark field imaging: a feasibility study. Med Sci Monit 15:137–141Google Scholar
  41. 41.
    Dubin A, Edul VS, Pozo MO, Murias G, Canullan CM, Martins EF, Ferrara G, Canales HS, Laporte M, Estenssoro E, Ince C (2008) Persistent villi hypoperfusion explains intramucosal acidosis in sheep endotoxemia. Crit Care Med 36:535–542PubMedCrossRefGoogle Scholar
  42. 42.
    Dubin A, Pozo MO, Ferrara G, Murias G, Martins E, Canullan C, Canales HS, Kanoore Edul V, Estenssoro E, Ince C (2009) Systemic and microcirculatory responses to progressive hemorrhage. Intensive Care Med 35:556–564PubMedCrossRefGoogle Scholar
  43. 43.
    Verdant CL, De Backer D, Bruhn A, Clausi C, Su F, Wang Z, Rodriguez H, Pries AR, Vincent JL (2009) Evaluation of sublingual and gut mucosal microcirculation in sepsis: a quantitative analysis. Crit Care Med 37:2875–2881PubMedCrossRefGoogle Scholar
  44. 44.
    Bracht H, Krejci V, Hiltebrand L, Brandt S, Sigurdsson G, Ali SZ, Takala J, Jakob SM (2008) Orthogonal polarization spectroscopy to detect mesenteric hypoperfusion. Intensive Care Med 34:1883–1890PubMedCrossRefGoogle Scholar
  45. 45.
    Langer S, von Dobschuetz E, Harris AG, Krombach F, Messmer K (2000) Validation of the orthogonal polarization spectral imaging technique on solid organs. In: Messmer K (ed) Orthogonal polarization spectral imaging—Progress in applied microcirculation, vol 24, pp 32–46. Basel, KargerGoogle Scholar
  46. 46.
    Puhl G, Schaser KD, Vollmar B, Menger MD, Settmacher U (2003) Noninvasive in vivo analysis of the human hepatic microcirculation using orthogonal polorization spectral imaging. Transplantation 75:756–761PubMedCrossRefGoogle Scholar
  47. 47.
    Biberthaler P, Langer S, Luchting B, Khandoga A, Messmer K (2001) In vivo assessment of colon microcirculation: comparison of the new OPS imaging technique with intravital microscopy. Eur J Med Res 6:525–534PubMedGoogle Scholar
  48. 48.
    Tugtekin I, Radermacher P, Theisen M, Matejovic M, Stehr A, Ploner F, Matura K, Ince C, Georgieff M, Trager K (2001) Increased ileal-mucosal-arterial PCO2 gap is associated with impaired villus microcirculation in endotoxic pigs. Intensive Care Med 27:757–766PubMedCrossRefGoogle Scholar
  49. 49.
    Lupi O, Semenovitch I, Treu C, Bouskela E (2008) Orthogonal polarization technique in the assessment of human skin microcirculation. Int J Dermatol 47:425–431PubMedCrossRefGoogle Scholar
  50. 50.
    Genzel-Boroviczeny O, Strotgen J, Harris AG, Messmer K, Christ F (2002) Orthogonal polarization spectral imaging (OPS): a novel method to measure the microcirculation in term and preterm infants transcutaneously. Pediatr Res 51:386–391PubMedCrossRefGoogle Scholar
  51. 51.
    Kroth J, Weidlich K, Hiedl S, Nussbaum C, Christ F, Genzel-Boroviczeny O (2008) Functional vessel density in the first month of life in preterm neonates. Pediatr Res 64:567–571PubMedCrossRefGoogle Scholar
  52. 52.
    Schaser KD, Settmacher U, Puhl G, Zhang L, Mittlmeier T, Stover JF, Vollmar B, Menger MD, Neuhaus P, Haas NP (2003) Noninvasive analysis of conjunctival microcirculation during carotid artery surgery reveals microvascular evidence of collateral compensation and stenosis-dependent adaptation. J Vasc Surg 37:789–797PubMedCrossRefGoogle Scholar
  53. 53.
    Lindeboom JA, Mathura KR, Harkisoen S, van den Akker HP, Ince C (2005) Effect of smoking on the gingival capillary density: assessment of gingival capillary density with orthogonal polarization spectral imaging. J Clin Periodontol 32:1208–1212PubMedCrossRefGoogle Scholar
  54. 54.
    De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104PubMedCrossRefGoogle Scholar
  55. 55.
    De Backer D, Creteur J, Dubois MJ, Sakr Y, Vincent JL (2004) Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J 147:91–99PubMedCrossRefGoogle Scholar
  56. 56.
    Spronk PE, Ince C, Gardien MJ, Mathura KR, Oudemans-van Straaten HM, Zandstra DF (2002) Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet 360:1395–1396PubMedCrossRefGoogle Scholar
  57. 57.
    Trzeciak S, Dellinger RP, Parrillo JE, Guglielmi M, Bajaj J, Abate NL, Arnold RC, Colilla S, Zanotti S, Hollenberg SM (2007) Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med 49:88–98PubMedCrossRefGoogle Scholar
  58. 58.
    Boerma EC, van der Voort PH, Spronk PE, Ince C (2007) Relationship between sublingual and intestinal microcirculatory perfusion in patients with abdominal sepsis. Crit Care Med 35:1055–1060PubMedCrossRefGoogle Scholar
  59. 59.
    Dondorp AM, Ince C, Charunwatthana P, Hanson J, van Kuijen A, Faiz MA, Rahman MR, Hasan M, Bin YE, Ghose A, Ruangveerayut R, Limmathurotsakul D, Mathura K, White NJ, Day NP (2008) Direct in vivo assessment of microcirculatory dysfunction in severe falciparum malaria. J Infect Dis 197:79–84PubMedCrossRefGoogle Scholar
  60. 60.
    De Backer D, Hollenberg S, Boerma C, Goedhart P, Buchele G, Ospina-Tascon G, Dobbe I, Ince C (2007) How to evaluate the microcirculation: report of a round table conference. Crit Care 11:R101PubMedCrossRefGoogle Scholar
  61. 61.
    Buchele GL, Silva E, Ospina-Tascon G, Vincent JL, De Backer D (2009) Effects of hydrocortisone on microcirculatory alterations in patients with septic shock. Crit Care Med 37:1341–1347PubMedCrossRefGoogle Scholar
  62. 62.
    Jhanji S, Lee C, Watson D, Hinds C, Pearse RM (2009) Microvascular flow and tissue oxygenation after major abdominal surgery: association with post-operative complications. Intensive Care Med 35:671–677PubMedCrossRefGoogle Scholar
  63. 63.
    Boerma EC, Mathura KR, van der Voort PH, Spronk PE, Ince C (2005) Quantifying bedside-derived imaging of microcirculatory abnormalities in septic patients: a prospective validation study. Crit Care 9:R601–R606PubMedCrossRefGoogle Scholar
  64. 64.
    Arnold RC, Parrillo JE, Phillip DR, Chansky ME, Shapiro NI, Lundy DJ, Trzeciak S, Hollenberg SM (2009) Point-of-care assessment of microvascular blood flow in critically ill patients. Intensive Care Med 35:1761–1766PubMedCrossRefGoogle Scholar
  65. 65.
    Salgado DR, Favory R, Creteur J, Vincent JL, De Backer D (2009) Automate microcirculation analysis still requires a human intervention. Intensive Care Med 35:S27 (abstract)Google Scholar
  66. 66.
    Lindert J, Werner J, Redlin M, Kuppe H, Habazettl H, Pries AR (2002) OPS imaging of human microcirculation: a short technical report. J Vasc Res 39:368–372PubMedCrossRefGoogle Scholar
  67. 67.
    Pinsky MR, Vincent JL (2005) Let us use the pulmonary artery catheter correctly and only when we need it. Crit Care Med 33:1119–1122PubMedCrossRefGoogle Scholar
  68. 68.
    Podbregar M, Mozina H (2007) Skeletal muscle oxygen saturation does not estimate mixed venous oxygen saturation in patients with severe left heart failure and additional severe sepsis or septic shock. Crit Care 11:R6PubMedCrossRefGoogle Scholar
  69. 69.
    Marik PE, Bankov A (2003) Sublingual capnometry versus traditional markers of tissue oxygenation in critically ill patients. Crit Care Med 31:818–822PubMedCrossRefGoogle Scholar
  70. 70.
    Dyson A, Stidwill R, Taylor V, Singer M (2009) The impact of inspired oxygen concentration on tissue oxygenation during progressive haemorrhage. Intensive Care Med 35:1783–1791PubMedCrossRefGoogle Scholar
  71. 71.
    VanderMeer TJ, Wang H, Fink MP (1995) Endotoxemia causes ileal mucosal acidosis in the absence of mucosal hypoxia in a normodynamic porcine model of septic shock. Crit Care Med 23:1217–1225PubMedCrossRefGoogle Scholar
  72. 72.
    Dyson A, Stidwill R, Taylor V, Singer M (2007) Tissue oxygen monitoring in rodent models of shock. Am J Physiol Heart Circ Physiol 293:H526–H533PubMedCrossRefGoogle Scholar
  73. 73.
    Jhanji S, Stirling S, Patel N, Hinds CJ, Pearse RM (2009) The effect of increasing doses of norepinephrine on tissue oxygenation and microvascular flow in patients with septic shock. Crit Care Med 37:1961–1966PubMedCrossRefGoogle Scholar
  74. 74.
    Schwarz B, Hofstotter H, Salak N, Pajk W, Knotzer H, Mayr A, Labeck B, Kafka R, Ulmer H, Hasibeder W (2001) Effects of norepinephrine and phenylephrine on intestinal oxygen supply and mucosal tissue oxygen tension. Intensive Care Med 27:593–601PubMedCrossRefGoogle Scholar
  75. 75.
    Albuszies G, Radermacher P, Vogt J, Wachter U, Weber S, Schoaff M, Georgieff M, Barth E (2005) Effect of increased cardiac output on hepatic and intestinal microcirculatory blood flow, oxygenation, and metabolism in hyperdynamic murine septic shock. Crit Care Med 33:2332–2338PubMedCrossRefGoogle Scholar
  76. 76.
    Sakr Y, Gath V, Oishi J, Klinzing S, Simon TP, Reinhart K, Marx G (2010) Characterization of buccal microvascular response in patients with septic shock. Eur J Anaesthesiol 27:388–394PubMedCrossRefGoogle Scholar
  77. 77.
    Vollmar B, Rüttinger D, Menger MD (1997) Monitoring of microvascular hemoglobin oxygenation in liver and skeletal muscle tissue of endotoxin-exposed rats using reflection spectrophotometry. Adv Exp Med Biol 428:397–402Google Scholar
  78. 78.
    Temmesfeld-Wollbrück B, Szalay A, Mayer K, Olschewski H, Seeger W, Grimminger F (1998) Abnormalities of gastric mucosal oxygenation in septic shock. Am J Respir Crit Care Med 157:1586–1592PubMedGoogle Scholar
  79. 79.
    Jobsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267PubMedCrossRefGoogle Scholar
  80. 80.
    Myers DE, Anderson LD, Seifert RP, Ortner JP, Cooper CE, Beilman GJ, Mowlem JD (2005) Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy. J Biomed Opt 10:034017Google Scholar
  81. 81.
    Creteur J, Carollo T, Soldati G, Buchele G, De Backer D, Vincent JL (2007) The prognostic value of muscle StO2 in septic patients. Intensive Care Med 33:1549–1556PubMedCrossRefGoogle Scholar
  82. 82.
    Mulier KE, Skarda DE, Taylor JH, Myers DE, McGraw MK, Gallea BL, Beilman GJ (2008) Near-infrared spectroscopy in patients with severe sepsis: correlation with invasive hemodynamic measurements. Surg Infect (Larchmt) 9:515–519CrossRefGoogle Scholar
  83. 83.
    Gomez H, Torres A, Polanco P, Kim HK, Zenker S, Puyana JC, Pinsky MR (2008) Use of non-invasive NIRS during a vascular occlusion test to assess dynamic tissue O2 saturation response. Intensive Care Med 34:1600–1607PubMedCrossRefGoogle Scholar
  84. 84.
    Pareznik R, Knezevic R, Voga G, Podbregar M (2006) Changes in muscle tissue oxygenation during stagnant ischemia in septic patients. Intensive Care Med 32:87–92PubMedCrossRefGoogle Scholar
  85. 85.
    De Blasi RA, Palmisani S, Alampi D, Mercieri M, Romano R, Collini S, Pinto G (2005) Microvascular dysfunction and skeletal muscle oxygenation assessed by phase-modulation near-infrared spectroscopy in patients with septic shock. Intensive Care Med 31:1661–1668PubMedCrossRefGoogle Scholar
  86. 86.
    Boushel R, Piantadosi CA (2000) Near-infrared spectroscopy for monitoring muscle oxygenation. Acta Physiol Scand 168:615–622PubMedCrossRefGoogle Scholar
  87. 87.
    Levy B, Gawalkiewicz P, Vallet B, Briancon S, Nace L, Bollaert PE (2003) Gastric capnometry with air-automated tonometry predicts outcome in critically ill patients. Crit Care Med 31:474–480PubMedCrossRefGoogle Scholar
  88. 88.
    Schlichtig R, Bowles SA (1994) Distinguishing between aerobic and anaerobic appearance of dissolved CO2 in intestine during low flow. J Appl Physiol 76:2443–2451PubMedGoogle Scholar
  89. 89.
    Poeze M, Solberg BC, Greve JW, Ramsay G (2005) Monitoring global volume-related hemodynamic or regional variables after initial resuscitation: what is a better predictor of outcome in critically ill septic patients? Crit Care Med 33:2494–2500PubMedCrossRefGoogle Scholar
  90. 90.
    Creteur J, De Backer D, Vincent JL (1999) Does gastric tonometry monitor splanchnic perfusion? Crit Care Med 27:2480–2484PubMedCrossRefGoogle Scholar
  91. 91.
    Nevière R, Mathieu D, Chagnon JL, Lebleu N, Wattel F (1996) The contrasting effects of dobutamine and dopamine on gastric mucosal perfusion in septic patients. Am J Respir Crit Care Med 154:1684–1688PubMedGoogle Scholar
  92. 92.
    Weil MH, Nakagawa Y, Tang W, Sato Y, Ercoli F, Finegan R, Grayman G, Bisera J (1999) Sublingual capnometry: a new noninvasive measurement for diagnosis and quantitation of severity of circulatory shock. Crit Care Med 27:1225–1229PubMedCrossRefGoogle Scholar
  93. 93.
    Cammarata GA, Weil MH, Castillo CJ, Fries M, Wang H, Sun S, Tang W (2009) Buccal capnometry for quantitating the severity of hemorrhagic shock. Shock 31:207–211PubMedCrossRefGoogle Scholar
  94. 94.
    Marik PE (2001) Sublingual capnography: a clinical validation study. Chest 120:923–927PubMedCrossRefGoogle Scholar
  95. 95.
    Baron BJ, Dutton RP, Zehtabchi S, Spanfelner J, Stavile KL, Khodorkovsky B, Nagdev A, Hahn B, Scalea TM (2007) Sublingual capnometry for rapid determination of the severity of hemorrhagic shock. J Trauma 62:120–124PubMedCrossRefGoogle Scholar
  96. 96.
    Rackow EC, O’Neil P, Astiz ME, Carpati CM (2001) Sublingual capnometry and indexes of tissue perfusion in patients with circulatory failure. Chest 120:1633–1638PubMedCrossRefGoogle Scholar
  97. 97.
    Creteur J, De Backer D, Sakr Y, koch M, Vincent JL (2006) Sublingual capnometry tracks microcirculatory changes in septic patients. Intensive Care Med 32:516–523PubMedCrossRefGoogle Scholar
  98. 98.
    de Boer J, Potthoff H, Mulder PO, Dofferhoff AS, van Thiel RJ, Plijter-Groendijk H, Korf J (1994) Lactate monitoring with subcutaneous microdialysis in patients with shock: a pilot study. Circ Shock 43:57–63PubMedGoogle Scholar
  99. 99.
    Jorgensen VL, Nielsen SL, Espersen K, Perner A (2006) Increased colorectal permeability in patients with severe sepsis and septic shock. Intensive Care Med 32:1790–1796PubMedCrossRefGoogle Scholar
  100. 100.
    Jorgensen VL, Reiter N, Perner A (2006) Luminal concentrations of L- and D-lactate in the rectum may relate to severity of disease and outcome in septic patients. Crit Care 10:R163PubMedCrossRefGoogle Scholar
  101. 101.
    Spanos A, Jhanji S, Vivian-Smith A, Harris T, Pearse RM (2010) Early microvascular changes in sepsis and severe sepsis. Shock 33:387–391PubMedCrossRefGoogle Scholar
  102. 102.
    Draisma A, Bemelmans R, van der Hoeven JG, Spronk P, Pickkers P (2009) Microcirculation and vascular reactivity during endotoxemia and endotoxin tolerance in humans. Shock 31:581–585PubMedCrossRefGoogle Scholar
  103. 103.
    Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL (2004) Persistant microvasculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32:1825–1831PubMedCrossRefGoogle Scholar
  104. 104.
    Trzeciak S, McCoy JV, Phillip DR, Arnold RC, Rizzuto M, Abate NL, Shapiro NI, Parrillo JE, Hollenberg SM (2008) Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med 34:2210–2217PubMedCrossRefGoogle Scholar
  105. 105.
    Doerschug KC, Delsing AS, Schmidt GA, Haynes WG (2007) Impairments in microvascular reactivity are related to organ failure in human sepsis. Am J Physiol Heart Circ Physiol 293:H1065–H1071PubMedCrossRefGoogle Scholar
  106. 106.
    Skarda DE, Mulier KE, Myers DE, Taylor JH, Beilman GJ (2007) Dynamic near-infrared spectroscopy measurements in patients with severe sepsis. Shock 27:348–353PubMedCrossRefGoogle Scholar
  107. 107.
    den Uil CA, Caliskan K, Lagrand WK, van der Ent M, Jewbali LS, van Kuijk JP, Spronk PE, Simoons ML (2009) Dose-dependent benefit of nitroglycerin on microcirculation of patients with severe heart failure. Intensive Care Med 35:1893–1899CrossRefGoogle Scholar
  108. 108.
    den Uil CA, Lagrand WK, Spronk PE, van der Ent M, Jewbali LS, Brugts JJ, Ince C, Simoons ML (2009) Low-dose nitroglycerin improves microcirculation in hospitalized patients with acute heart failure. Eur J Heart Fail 11:386–390CrossRefGoogle Scholar
  109. 109.
    den Uil CA, Lagrand WK, van der Ent M, Jewbali LS, Brugts JJ, Spronk PE, Simoons ML (2009) The effects of intra-aortic balloon pump support on macrocirculation and tissue microcirculation in patients with cardiogenic shock. Cardiology 114:42–46CrossRefGoogle Scholar
  110. 110.
    Jung C, Ferrari M, Rodiger C, Fritzenwanger M, Goebel B, Lauten A, Pfeifer R, Figulla HR (2009) Evaluation of the sublingual microcirculation in cardiogenic shock. Clin Hemorheol Microcirc 42:141–148PubMedGoogle Scholar
  111. 111.
    Jung C, Rodiger C, Fritzenwanger M, Schumm J, Lauten A, Figulla HR, Ferrari M (2009) Acute microflow changes after stop and restart of intra-aortic balloon pump in cardiogenic shock. Clin Res Cardiol 98:469–475PubMedCrossRefGoogle Scholar
  112. 112.
    Jung C, Ferrari M, Gradinger R, Fritzenwanger M, Pfeifer R, Schlosser M, Poerner TC, Brehm BR, Figulla HR (2008) Evaluation of the microcirculation during extracorporeal membrane-oxygenation. Clin Hemorheol Microcirc 40:311–314PubMedGoogle Scholar
  113. 113.
    Pearse R, Dawson D, Fawcett J, Rhodes A, Grounds M, Bennett D (2005) Early goal directed therapy following major surgery reduces complications and duration of hospital stay. A randomized, controlled trial. Crit Care 9:R687–R693PubMedCrossRefGoogle Scholar
  114. 114.
    Pottecher J, Deruddre S, Teboul JL, Georger J, Laplace C, Benhamou D, Vicaut E, Duranteau J (2010) Both passive leg raising and intravascular volume expansion improve sublingual microcirculatory perfusion in severe sepsis and septic shock. Intensive Care Med. doi:10.1007/s00134-010-1966-6
  115. 115.
    Bauer A, Kofler S, Thiel M, Eifert S, Christ F (2007) Monitoring of the sublingual microcirculation in cardiac surgery using orthogonal polarization spectral imaging: preliminary results. Anesthesiology 107:939–945PubMedCrossRefGoogle Scholar
  116. 116.
    den Uil CA, Lagrand WK, Spronk PE, van Domburg RT, Hofland J, Luthen C, Brugts JJ, van der Ent M, Simoons ML (2008) Impaired sublingual microvascular perfusion during surgery with cardiopulmonary bypass: a pilot study. J Thorac Cardiovasc Surg 136:129–134CrossRefGoogle Scholar
  117. 117.
    De Backer D, Dubois MJ, Schmartz D, koch M, Ducart A, Barvais L, Vincent JL (2009) Microcirculatory alterations in cardiac surgery: effects of cardiopulmonary bypass and anesthesia. Ann Thorac Surg 88:1396–1403PubMedCrossRefGoogle Scholar
  118. 118.
    Parthasarathi K, Lipowsky HH (1999) Capillary recruitment in response to tissue hypoxia and its dependence on red blood cell deformability. Am J Physiol 277:H2145–H2157PubMedGoogle Scholar
  119. 119.
    Schumacker PT, Chandel N, Agusti AGN (1993) Oxygen conformance of cellular respiration in hepatocytes. Am J Physiol 265:L395–L402PubMedGoogle Scholar

Copyright information

© Copyright jointly held by Springer and ESICM 2010

Authors and Affiliations

  • Daniel De Backer
    • 1
  • Gustavo Ospina-Tascon
    • 1
  • Diamantino Salgado
    • 1
  • Raphaël Favory
    • 1
  • Jacques Creteur
    • 1
  • Jean-Louis Vincent
    • 1
  1. 1.Department of Intensive Care, Erasme University HospitalUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations