Advertisement

Intensive Care Medicine

, Volume 36, Issue 11, pp 1953–1961 | Cite as

Regional tidal ventilation and compliance during a stepwise vital capacity manoeuvre

  • Peter A. DargavilleEmail author
  • Peter C. Rimensberger
  • Inéz Frerichs
Pediatric Experimental

Abstract

Purpose

To determine whether, during mechanical ventilation, an optimal positive end-expiratory pressure (PEEP) can be identified by measurement of regional tidal volume and compliance [V T(reg), C RS(reg)].

Methods

Sixteen anaesthetized intubated neonatal piglets underwent a stepwise vital capacity manoeuvre performed during pressure control ventilation, with 5 cmH2O PEEP increments to 25 cmH2O, and decrements to 0 cmH2O. Peak inflating pressure was 10 cmH2O above PEEP throughout. The manoeuvre was performed in the normal lung, after repeated saline lavage and after surfactant therapy. Global V T and C RS were measured at the airway opening; V T(reg) and C RS(reg) were measured in the ventral, medial and dorsal lung using electrical impedance tomography (EIT).

Results

Most uniform distribution of regional tidal ventilation was noted during PEEP decrements after lung recruitment, at varying PEEP levels. In the lavaged and surfactant-treated lung the PEEP optimal for ventilation distribution was also associated with highest mean V T(reg) [lavaged: 95 ± 9.3% of maximum, mean ± standard deviation (SD); surfactant-treated: 92 ± 17%] and global V T (96 ± 10%; 96 ± 15%). Regional C RS plots clearly demonstrated co-existent ventral overdistension and dorsal recruitment, particularly during PEEP increments; whereas during PEEP decrements, peak C RS(reg) values showed considerable interregional concordance [e.g. peak C RS(reg) in the lavaged left lung; ventral: 0.017 ± 0.0036; medial: 0.016 ± 0.0054; dorsal: 0.017 ± 0.0073 cmH2O−1; P = 0.98, analysis of variance (ANOVA)].

Conclusions

After lung recruitment, a PEEP level can be identified by EIT at which tidal ventilation is uniformly distributed, with associated concordance in compliance between lung regions. Bedside monitoring of regional tidal ventilation and compliance using EIT may thus aid in PEEP selection.

Keywords

Tidal volume Ventilation distribution Lung compliance Electrical impedance tomography 

Notes

Acknowledgments

We thank Dr. Denis Morel, Anesthesiological Investigation Unit, University Hospital of Geneva for his contribution to these studies. This work was supported by a restricted research grant by Viasys Healthcare, and the surfactant (Curosurf) was generously provided by Nycomed.

Supplementary material

134_2010_1995_MOESM1_ESM.doc (112 kb)
Supplementary material 1 (DOC 112 kb)

References

  1. 1.
    Rimensberger PC (2002) Neonatal respiratory failure. Curr Opin Pediatr 14:315–321CrossRefPubMedGoogle Scholar
  2. 2.
    Lachmann B (1992) Open up the lung and keep the lung open. Intensive Care Med 18:319–321CrossRefPubMedGoogle Scholar
  3. 3.
    Rimensberger PC, Cox PN, Frndova H, Bryan AC (1999) The open lung during small tidal volume ventilation: concepts of recruitment and “optimal” positive end-expiratory pressure. Crit Care Med 27:1946–1952CrossRefPubMedGoogle Scholar
  4. 4.
    Odenstedt H, Lindgren S, Olegard C, Erlandsson K, Lethvall S, Aneman A, Stenqvist O, Lundin S (2005) Slow moderate pressure recruitment maneuver minimizes negative circulatory and lung mechanic side effects: evaluation of recruitment maneuvers using electric impedance tomography. Intensive Care Med 31:1706–1714CrossRefPubMedGoogle Scholar
  5. 5.
    Meier T, Luepschen H, Karsten J, Leibecke T, Grossherr M, Gehring H, Leonhardt S (2008) Assessment of regional lung recruitment and derecruitment during a PEEP trial based on electrical impedance tomography. Intensive Care Med 34:543–550CrossRefPubMedGoogle Scholar
  6. 6.
    Halter JM, Steinberg JM, Schiller HJ, Dasilva M, Gatto LA, Landas S, Nieman GF (2003) Positive end-expiratory pressure after a recruitment maneuver prevents both alveolar collapse and recruitment/derecruitment. Am J Respir Crit Care Med 167:1620–1626CrossRefPubMedGoogle Scholar
  7. 7.
    Takeuchi M, Goddon S, Dolhnikoff M, Shimaoka M, Hess D, Amato MB, Kacmarek RM (2002) Set positive end-expiratory pressure during protective ventilation affects lung injury. Anesthesiology 97:682–692CrossRefPubMedGoogle Scholar
  8. 8.
    Gothberg S, Parker TA, Griebel J, Abman SH, Kinsella JP (2001) Lung volume recruitment in lambs during high-frequency oscillatory ventilation using respiratory inductive plethysmography. Pediatr Res 49:38–44CrossRefPubMedGoogle Scholar
  9. 9.
    Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354CrossRefPubMedGoogle Scholar
  10. 10.
    Gattinoni L, Vagginelli F, Chiumello D, Taccone P, Carlesso E (2003) Physiologic rationale for ventilator setting in acute lung injury/acute respiratory distress syndrome patients. Crit Care Med 31:S300–S304CrossRefPubMedGoogle Scholar
  11. 11.
    Borges JB, Okamoto VN, Matos GF, Caramez MP, Arantes PR, Barros F, Souza CE, Victorino JA, Kacmarek RM, Barbas CS, Carvalho CR, Amato MB (2006) Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med 174:268–278CrossRefPubMedGoogle Scholar
  12. 12.
    Puybasset L, Gusman P, Muller JC, Cluzel P, Coriat P, Rouby JJ (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. III. Consequences for the effects of positive end-expiratory pressure. CT Scan ARDS Study Group. Adult Respiratory Distress Syndrome. Intensive Care Med 26:1215–1227CrossRefPubMedGoogle Scholar
  13. 13.
    Pelosi P, Goldner M, McKibben A, Adams A, Eccher G, Caironi P, Losappio S, Gattinoni L, Marini JJ (2001) Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med 164:122–130PubMedGoogle Scholar
  14. 14.
    Terragni PP, Rosboch G, Tealdi A, Corno E, Menaldo E, Davini O, Gandini G, Herrmann P, Mascia L, Quintel M, Slutsky AS, Gattinoni L, Ranieri VM (2007) Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 175:160–166CrossRefPubMedGoogle Scholar
  15. 15.
    Suter PM, Fairley B, Isenberg MD (1975) Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 292:284–289CrossRefPubMedGoogle Scholar
  16. 16.
    Caironi P, Gattinoni L (2007) How to monitor lung recruitment in patients with acute lung injury. Curr Opin Crit Care 13:338–343CrossRefPubMedGoogle Scholar
  17. 17.
    Hinz J, Gehoff A, Moerer O, Frerichs I, Hahn G, Hellige G, Quintel M (2007) Regional filling characteristics of the lungs in mechanically ventilated patients with acute lung injury. Eur J Anaesthesiol 24:414–424CrossRefPubMedGoogle Scholar
  18. 18.
    Kunst PW, Vazquez dA, Bohm SH, Faes TJ, Lachmann B, Postmus PE, de Vries PM (2000) Monitoring of recruitment and derecruitment by electrical impedance tomography in a model of acute lung injury. Crit Care Med 28:3891–3895CrossRefPubMedGoogle Scholar
  19. 19.
    Frerichs I, Dargaville PA, van Genderingen H, Morel DR, Rimensberger PC (2006) Lung volume recruitment after surfactant administration modifies spatial distribution of ventilation. Am J Respir Crit Care Med 174:772–779CrossRefPubMedGoogle Scholar
  20. 20.
    Wolf GK, Grychtol B, Frerichs I, van Genderingen HR, Zurakowski D, Thompson JE, Arnold JH (2007) Regional lung volume changes in children with acute respiratory distress syndrome during a derecruitment maneuver. Crit Care Med 35:1972–1978CrossRefPubMedGoogle Scholar
  21. 21.
    Costa EL, Borges JB, Melo A, Suarez-Sipmann F, Toufen C Jr, Bohm SH, Amato MB (2009) Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. Intensive Care Med 35:1132–1137CrossRefPubMedGoogle Scholar
  22. 22.
    Frerichs I, Dargaville PA, Dudykevych T, Rimensberger PC (2003) Electrical impedance tomography: a method for monitoring regional lung aeration and tidal volume distribution? Intensive Care Med 29:2312–2316CrossRefPubMedGoogle Scholar
  23. 23.
    Bhutani VK, Sivieri EM, Abbasi S, Shaffer TH (1988) Evaluation of neonatal pulmonary mechanics and energetics: a two factor least mean square analysis. Pediatr Pulmonol 4:150–158CrossRefPubMedGoogle Scholar
  24. 24.
    Hickling KG (2001) Best compliance during a decremental, but not incremental, positive end-expiratory pressure trial is related to open-lung positive end-expiratory pressure: a mathematical model of acute respiratory distress syndrome lungs. Am J Respir Crit Care Med 163:69–78PubMedGoogle Scholar
  25. 25.
    Downie JM, Nam AJ, Simon BA (2004) Pressure-volume curve does not predict steady-state lung volume in canine lavage lung injury. Am J Respir Crit Care Med 169:957–962CrossRefPubMedGoogle Scholar
  26. 26.
    Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323PubMedGoogle Scholar
  27. 27.
    Schibler A, Henning R (2002) Positive end-expiratory pressure and ventilation inhomogeneity in mechanically ventilated children. Pediatr Crit Care Med 3:124–128CrossRefPubMedGoogle Scholar
  28. 28.
    Rouby JJ, Ferrari F, Bouhemad B, Lu Q (2007) Positive end-expiratory pressure in acute respiratory distress syndrome: should the ‘open lung strategy’ be replaced by a ‘protective lung strategy’? Crit Care 11:180CrossRefPubMedGoogle Scholar
  29. 29.
    van Genderingen HR, van Vught AJ, Jansen JR (2003) Estimation of regional lung volume changes by electrical impedance pressures tomography during a pressure–volume maneuver. Intensive Care Med 29:233–240PubMedGoogle Scholar
  30. 30.
    Kunst PW, Bohm SH, Vazquez dA, Amato MB, Lachmann B, Postmus PE, de Vries PM (2000) Regional pressure volume curves by electrical impedance tomography in a model of acute lung injury. Crit Care Med 28:178–183CrossRefPubMedGoogle Scholar
  31. 31.
    Hinz J, Moerer O, Neumann P, Dudykevych T, Frerichs I, Hellige G, Quintel M (2006) Regional pulmonary pressure volume curves in mechanically ventilated patients with acute respiratory failure measured by electrical impedance tomography. Acta Anaesthesiol Scand 50:331–339CrossRefPubMedGoogle Scholar
  32. 32.
    Kloot TE, Blanch L, Melynne YA, Weinert C, Adams AB, Marini JJ, Shapiro RS, Nahum A (2000) Recruitment maneuvers in three experimental models of acute lung injury. Effect on lung volume and gas exchange. Am J Respir Crit Care Med 161:1485–1494PubMedGoogle Scholar
  33. 33.
    Pelosi P, D’Andrea L, Vitale G, Pesenti A, Gattinoni L (1994) Vertical gradient of regional lung inflation in adult respiratory distress syndrome. Am J Respir Crit Care Med 149:8–13PubMedGoogle Scholar
  34. 34.
    Hedenstierna G (2004) Using electric impedance tomography to assess regional ventilation at the bedside. Am J Respir Crit Care Med 169:777–778CrossRefPubMedGoogle Scholar
  35. 35.
    Wolf GK, Arnold JH (2005) Noninvasive assessment of lung volume: respiratory inductance plethysmography and electrical impedance tomography. Crit Care Med 33:S163–S169CrossRefPubMedGoogle Scholar
  36. 36.
    Victorino JA, Borges JB, Okamoto VN, Matos GF, Tucci MR, Caramez MP, Tanaka H, Sipmann FS, Santos DC, Barbas CS, Carvalho CR, Amato MB (2004) Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am J Respir Crit Care Med 169:791–800CrossRefPubMedGoogle Scholar
  37. 37.
    Wrigge H, Zinserling J, Muders T, Varelmann D, Gunther U, von der GC, Magnusson A, Hedenstierna G, Putensen C (2008) Electrical impedance tomography compared with thoracic computed tomography during a slow inflation maneuver in experimental models of lung injury. Crit Care Med 36:903–909CrossRefPubMedGoogle Scholar
  38. 38.
    Tingay DG, Copnell B, Grant CA, Dargaville PA, Dunster KR, Schibler A (2010) The effect of endotracheal suction on regional tidal ventilation and end-expiratory lung volume. Intensive Care Med 36:888–896CrossRefPubMedGoogle Scholar

Copyright information

© Copyright jointly held by Springer and ESICM 2010

Authors and Affiliations

  • Peter A. Dargaville
    • 1
    Email author
  • Peter C. Rimensberger
    • 2
  • Inéz Frerichs
    • 3
  1. 1.Department of PaediatricsRoyal Hobart Hospital and University of TasmaniaHobartAustralia
  2. 2.Pediatric and Neonatal Intensive Care Unit, Children’s HospitalUniversity of GenevaGenevaSwitzerland
  3. 3.Department of Anaesthesiology and Intensive Care MedicineUniversity Medical Centre Schleswig-HolsteinKielGermany

Personalised recommendations