Intensive Care Medicine

, Volume 36, Issue 10, pp 1644–1656

The RAGE axis in systemic inflammation, acute lung injury and myocardial dysfunction: an important therapeutic target?

  • Benedict C. Creagh-Brown
  • Gregory J. Quinlan
  • Timothy W. Evans
  • Anne Burke-Gaffney
Review

Abstract

Background

The sepsis syndromes, frequently complicated by pulmonary and cardiac dysfunction, remain a major cause of death amongst the critically ill. Targeted therapies aimed at ameliorating the systemic inflammation that characterises the sepsis syndromes have largely yielded disappointing results in clinical trials. Whilst there are many potential reasons for lack of success of clinical trials, one possibility is that the pathways targeted, to date, are only modifiable very early in the course of the illness. More recent approaches have therefore attempted to identify pathways that could offer a wider therapeutic window, such as the receptor for advanced glycation end-products (RAGE) and its ligands.

Purpose

The objectives of this study were to review the evidence supporting the role of the RAGE axis in systemic inflammation and associated acute lung injury and myocardial dysfunction, to explore some of the problems and conflicts that these RAGE studies have raised and to consider strategies by which they might be resolved.

Methods

MEDLINE was searched (1990–2010) and relevant literature collected and reviewed.

Results and conclusion

RAGE is an inflammation-perpetuating receptor with a diverse range of ligands. Evidence supporting a role of the RAGE axis in the pathogenesis of systemic inflammation, ALI and myocardial dysfunction is compelling with numerous animal experiments showing the beneficial effects of inhibiting the RAGE axis. Despite a number of unanswered questions that need to be further addressed, the potential for inhibiting RAGE-mediated inflammation in humans undoubtedly exists.

Keywords

RAGE SIRS Sepsis ALI ARDS Myocardial dysfunction HMGB1 

References

  1. 1.
    Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310PubMedCrossRefGoogle Scholar
  2. 2.
    Engel C, Brunkhorst FM, Bone HG, Brunkhorst R, Gerlach H, Grond S, Gruendling M, Huhle G, Jaschinski U, John S, Mayer K, Oppert M, Olthoff D, Quintel M, Ragaller M, Rossaint R, Stuber F, Weiler N, Welte T, Bogatsch H, Hartog C, Loeffler M, Reinhart K (2007) Epidemiology of sepsis in Germany: results from a national prospective multicenter study. Intensive Care Med 33:606–618PubMedCrossRefGoogle Scholar
  3. 3.
    Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, Moreno R, Carlet J, Le Gall JR, Payen D (2006) Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 34:344–353PubMedCrossRefGoogle Scholar
  4. 4.
    Brun-Buisson C (2000) The epidemiology of the systemic inflammatory response. Intensive Care Med 26(Suppl 1):S64–S74PubMedCrossRefGoogle Scholar
  5. 5.
    Dulhunty JM, Lipman J, Finfer S (2008) Does severe non-infectious SIRS differ from severe sepsis? Results from a multi-centre Australian and New Zealand intensive care unit study. Intensive Care Med 34:1654–1661PubMedCrossRefGoogle Scholar
  6. 6.
    Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342:1334–1349PubMedCrossRefGoogle Scholar
  7. 7.
    Vieillard-Baron A, Caille V, Charron C, Belliard G, Page B, Jardin F (2008) Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit Care Med 36:1701–1706PubMedCrossRefGoogle Scholar
  8. 8.
    Williams TA, Dobb GJ, Finn JC, Knuiman MW, Geelhoed E, Lee KY, Webb SA (2008) Determinants of long-term survival after intensive care. Crit Care Med 36:1523–1530PubMedCrossRefGoogle Scholar
  9. 9.
    Webster NR, Galley HF (2009) Immunomodulation in the critically ill. Br J Anaesth 103:70–81PubMedCrossRefGoogle Scholar
  10. 10.
    Schmidt AM, Yan SD, Yan SF, Stern DM (2000) The biology of the receptor for advanced glycation end products and its ligands. Biochim Biophys Acta 1498:99–111PubMedCrossRefGoogle Scholar
  11. 11.
    Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, Elliston K, Stern D, Shaw A (1992) Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 267:14998–15004PubMedGoogle Scholar
  12. 12.
    Yan SF, Ramasamy R, Schmidt AM (2010) Soluble RAGE: therapy and biomarker in unraveling the RAGE axis in chronic disease and aging. Biochem Pharmacol 79:1379–1386PubMedCrossRefGoogle Scholar
  13. 13.
    Buckley ST, Ehrhardt C (2010) The receptor for advanced glycation end products (RAGE) and the lung. J Biomed Biotechnol 2010:917108PubMedGoogle Scholar
  14. 14.
    Gefter JV, Shaufl AL, Fink MP, Delude RL (2009) Comparison of distinct protein isoforms of the receptor for advanced glycation end-products expressed in murine tissues and cell lines. Cell Tissue Res 337:79–89PubMedCrossRefGoogle Scholar
  15. 15.
    Galichet A, Weibel M, Heizmann CW (2008) Calcium-regulated intramembrane proteolysis of the RAGE receptor. Biochem Biophys Res Commun 370:1–5PubMedCrossRefGoogle Scholar
  16. 16.
    Raucci A, Cugusi S, Antonelli A, Barabino SM, Monti L, Bierhaus A, Reiss K, Saftig P, Bianchi ME (2008) A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). FASEB J 22:3716–3727PubMedCrossRefGoogle Scholar
  17. 17.
    Brown LF, Fraser CG (2008) Assay validation and biological variation of serum receptor for advanced glycation end-products. Ann Clin Biochem 45:518–519PubMedCrossRefGoogle Scholar
  18. 18.
    Yamagishi S, Adachi H, Nakamura K, Matsui T, Jinnouchi Y, Takenaka K, Takeuchi M, Enomoto M, Furuki K, Hino A, Shigeto Y, Imaizumi T (2006) Positive association between serum levels of advanced glycation end products and the soluble form of receptor for advanced glycation end products in nondiabetic subjects. Metabolism 55:1227–1231PubMedCrossRefGoogle Scholar
  19. 19.
    Santilli F, Vazzana N, Bucciarelli LG, Davi G (2009) Soluble forms of RAGE in human diseases: clinical and therapeutical implications. Curr Med Chem 16:940–952PubMedCrossRefGoogle Scholar
  20. 20.
    Leclerc E, Fritz G, Vetter SW, Heizmann CW (2009) Binding of S100 proteins to RAGE: an update. Biochim Biophys Acta 1793:993–1007PubMedCrossRefGoogle Scholar
  21. 21.
    Donato R (1999) Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type. Biochim Biophys Acta 1450:191–231PubMedCrossRefGoogle Scholar
  22. 22.
    Deloulme JC, Gentil BJ, Baudier J (2003) Monitoring of S100 homodimerization and heterodimeric interactions by the yeast two-hybrid system. Microsc Res Tech 60:560–568PubMedCrossRefGoogle Scholar
  23. 23.
    Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MA, Nacken W, Foell D, van der Poll T, Sorg C, Roth J (2007) Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13:1042–1049PubMedCrossRefGoogle Scholar
  24. 24.
    Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, Frazier A, Yang H, Ivanova S, Borovikova L, Manogue KR, Faist E, Abraham E, Andersson J, Andersson U, Molina PE, Abumrad NN, Sama A, Tracey KJ (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285:248–251PubMedCrossRefGoogle Scholar
  25. 25.
    Fink MP (2007) Bench-to-bedside review: high-mobility group box 1 and critical illness. Crit Care 11:229PubMedCrossRefGoogle Scholar
  26. 26.
    Kokkola R, Andersson A, Mullins G, Ostberg T, Treutiger CJ, Arnold B, Nawroth P, Andersson U, Harris RA, Harris HE (2005) RAGE is the major receptor for the proinflammatory activity of HMGB1 in rodent macrophages. Scand J Immunol 61:1–9PubMedCrossRefGoogle Scholar
  27. 27.
    Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D, Ishizaka A, Abraham E (2004) Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 279:7370–7377PubMedCrossRefGoogle Scholar
  28. 28.
    Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342PubMedCrossRefGoogle Scholar
  29. 29.
    Bianchi ME (2009) HMGB1 loves company. J Leukoc Biol 86:573–576PubMedCrossRefGoogle Scholar
  30. 30.
    Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, Parroche P, Drabic S, Golenbock D, Sirois C, Hua J, An LL, Audoly L, La Rosa G, Bierhaus A, Naworth P, Marshak-Rothstein A, Crow MK, Fitzgerald KA, Latz E, Kiener PA, Coyle AJ (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8:487–496PubMedCrossRefGoogle Scholar
  31. 31.
    Rauvala H (2007) Interview with Dr. Heikki Rauvala regarding pivotal advance: analysis of proinflammatory activity of highly purified eukaryotic recombinant HMGB1 (amphoterin). Interview by Marco E Bianchi. J Leukoc Biol 81:46–48PubMedGoogle Scholar
  32. 32.
    Tsan MF, Baochong G (2007) Pathogen-associated molecular pattern contamination as putative endogenous ligands of Toll-like receptors. J Endotoxin Res 13:6–14PubMedCrossRefGoogle Scholar
  33. 33.
    Smit AJ, Lutgers HL (2004) The clinical relevance of advanced glycation endproducts (AGE) and recent developments in pharmaceutics to reduce AGE accumulation. Curr Med Chem 11:2767–2784PubMedGoogle Scholar
  34. 34.
    Anderson MM, Requena JR, Crowley JR, Thorpe SR, Heinecke JW (1999) The myeloperoxidase system of human phagocytes generates Nepsilon-(carboxymethyl)lysine on proteins: a mechanism for producing advanced glycation end products at sites of inflammation. J Clin Invest 104:103–113PubMedCrossRefGoogle Scholar
  35. 35.
    Yan SF, Ramasamy R, Schmidt AM (2008) Mechanisms of disease: advanced glycation end-products and their receptor in inflammation and diabetes complications. Nat Clin Pract Endocrinol Metab 4:285–293PubMedCrossRefGoogle Scholar
  36. 36.
    Collison KS, Parhar RS, Saleh SS, Meyer BF, Kwaasi AA, Hammami MM, Schmidt AM, Stern DM, Al-Mohanna FA (2002) RAGE-mediated neutrophil dysfunction is evoked by advanced glycation end products (AGEs). J Leukoc Biol 71:433–444PubMedGoogle Scholar
  37. 37.
    Takahashi HK, Mori S, Wake H, Liu K, Yoshino T, Ohashi K, Tanaka N, Shikata K, Makino H, Nishibori M (2009) Advanced glycation end products subspecies-selectively induce adhesion molecule expression and cytokine production in human peripheral blood mononuclear cells. J Pharmacol Exp Ther 330:89–98PubMedCrossRefGoogle Scholar
  38. 38.
    Buetler TM, Leclerc E, Baumeyer A, Latado H, Newell J, Adolfsson O, Parisod V, Richoz J, Maurer S, Foata F, Piguet D, Junod S, Heizmann CW, Delatour T (2008) N(epsilon)-carboxymethyllysine-modified proteins are unable to bind to RAGE and activate an inflammatory response. Mol Nutr Food Res 52:370–378PubMedCrossRefGoogle Scholar
  39. 39.
    Valencia JV, Mone M, Koehne C, Rediske J, Hughes TE (2004) Binding of receptor for advanced glycation end products (RAGE) ligands is not sufficient to induce inflammatory signals: lack of activity of endotoxin-free albumin-derived advanced glycation end products. Diabetologia 47:844–852PubMedCrossRefGoogle Scholar
  40. 40.
    Thornalley PJ, Battah S, Ahmed N, Karachalias N, Agalou S, Babaei-Jadidi R, Dawnay A (2003) Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem J 375:581–592PubMedCrossRefGoogle Scholar
  41. 41.
    Yan SD, Zhu H, Zhu A, Golabek A, Du H, Roher A, Yu J, Soto C, Schmidt AM, Stern D, Kindy M (2000) Receptor-dependent cell stress and amyloid accumulation in systemic amyloidosis. Nat Med 6:643–651PubMedCrossRefGoogle Scholar
  42. 42.
    Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern D, Schmidt AM (1996) RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 382:685–691PubMedCrossRefGoogle Scholar
  43. 43.
    Chavakis T, Bierhaus A, Al-Fakhri N, Schneider D, Witte S, Linn T, Nagashima M, Morser J, Arnold B, Preissner KT, Nawroth PP (2003) The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment. J Exp Med 198:1507–1515PubMedCrossRefGoogle Scholar
  44. 44.
    Aleshin A, Ananthakrishnan R, Li Q, Rosario R, Lu Y, Qu W, Song F, Bakr S, Szabolcs M, D’Agati V, Liu R, Homma S, Schmidt AM, Yan SF, Ramasamy R (2008) RAGE modulates myocardial injury consequent to LAD infarction via impact on JNK and STAT signaling in a murine model. Am J Physiol Heart Circ Physiol 294:H1823–H1832PubMedCrossRefGoogle Scholar
  45. 45.
    Ghavami S, Rashedi I, Dattilo BM, Eshraghi M, Chazin WJ, Hashemi M, Wesselborg S, Kerkhoff C, Los M (2008) S100A8/A9 at low concentration promotes tumor cell growth via RAGE ligation and MAP kinase-dependent pathway. J Leukoc Biol 83:1484–1492PubMedCrossRefGoogle Scholar
  46. 46.
    Yeh CH, Sturgis L, Haidacher J, Zhang XN, Sherwood SJ, Bjercke RJ, Juhasz O, Crow MT, Tilton RG, Denner L (2001) Requirement for p38 and p44/p42 mitogen-activated protein kinases in RAGE-mediated nuclear factor-kappaB transcriptional activation and cytokine secretion. Diabetes 50:1495–1504PubMedCrossRefGoogle Scholar
  47. 47.
    Bierhaus A, Schiekofer S, Schwaninger M, Andrassy M, Humpert PM, Chen J, Hong M, Luther T, Henle T, Kloting I, Morcos M, Hofmann M, Tritschler H, Weigle B, Kasper M, Smith M, Perry G, Schmidt A-M, Stern DM, Haring H-U, Schleicher E, Nawroth PP (2001) Diabetes-associated sustained activation of the transcription factor nuclear factor κB. Diabetes 50:2792–2808PubMedCrossRefGoogle Scholar
  48. 48.
    Liliensiek B, Weigand MA, Bierhaus A, Nicklas W, Kasper M, Hofer S, Plachky J, Grone HJ, Kurschus FC, Schmidt AM, Yan SD, Martin E, Schleicher E, Stern DM, Hammerling GG, Nawroth PP, Arnold B (2004) Receptor for advanced glycation end products (RAGE) regulates sepsis but not the adaptive immune response. J Clin Invest 113:1641–1650PubMedGoogle Scholar
  49. 49.
    Lutterloh EC, Opal SM, Pittman DD, Keith JC Jr, Tan XY, Clancy BM, Palmer H, Milarski K, Sun Y, Palardy JE, Parejo NA, Kessimian N (2007) Inhibition of the RAGE products increases survival in experimental models of severe sepsis and systemic infection. Crit Care 11:R122PubMedCrossRefGoogle Scholar
  50. 50.
    Zhu S, Ashok M, Li J, Li W, Yang H, Wang P, Tracey KJ, Sama AE, Wang H (2009) Spermine protects mice against lethal sepsis partly by attenuating surrogate inflammatory markers. Mol Med 15:275–282PubMedGoogle Scholar
  51. 51.
    Yang H, Ochani M, Li J, Qiang X, Tanovic M, Harris HE, Susarla SM, Ulloa L, Wang H, DiRaimo R, Czura CJ, Roth J, Warren HS, Fink MP, Fenton MJ, Andersson U, Tracey KJ (2004) Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci U S A 101:296–301PubMedCrossRefGoogle Scholar
  52. 52.
    Ulloa L, Ochani M, Yang H, Tanovic M, Halperin D, Yang R, Czura CJ, Fink MP, Tracey KJ (2002) Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation. Proc Natl Acad Sci U S A 99:12351–12356PubMedCrossRefGoogle Scholar
  53. 53.
    van Zoelen MA, Schouten M, de Vos AF, Florquin S, Meijers JC, Nawroth PP, Bierhaus A, van der Poll T (2009) The receptor for advanced glycation end products impairs host defense in pneumococcal pneumonia. J Immunol 182:4349–4356PubMedCrossRefGoogle Scholar
  54. 54.
    van Zoelen MA, van der Sluijs KF, Achouiti A, Florquin S, Braun-Pater JM, Yang H, Nawroth PP, Tracey KJ, Bierhaus A, van der Poll T (2009) Receptor for advanced glycation end products is detrimental during influenza A virus pneumonia. Virology 391:265–273PubMedCrossRefGoogle Scholar
  55. 55.
    Raman KG, Sappington PL, Yang R, Levy RM, Prince JM, Liu S, Watkins SK, Schmidt AM, Billiar TR, Fink MP (2006) The role of RAGE in the pathogenesis of intestinal barrier dysfunction after hemorrhagic shock. Am J Physiol Gastrointest Liver Physiol 291:556–565CrossRefGoogle Scholar
  56. 56.
    van Zoelen MA, Vogl T, Foell D, Van Veen SQ, van Till JW, Florquin S, Tanck MW, Wittebole X, Laterre PF, Boermeester MA, Roth J, van der Poll T (2009) Expression and role of myeloid-related protein-14 in clinical and experimental sepsis. Am J Respir Crit Care Med 180:1098–1106PubMedCrossRefGoogle Scholar
  57. 57.
    Levy RM, Mollen KP, Prince JM, Kaczorowski DJ, Vallabhaneni R, Liu S, Tracey KJ, Lotze MT, Hackam DJ, Fink MP, Vodovotz Y, Billiar TR (2007) Systemic inflammation and remote organ injury following trauma require HMGB1. Am J Physiol Regul Integr Comp Physiol 293:R1538–R1544PubMedGoogle Scholar
  58. 58.
    Sawa H, Ueda T, Takeyama Y, Yasuda T, Shinzeki M, Nakajima T, Kuroda Y (2006) Blockade of high mobility group box-1 protein attenuates experimental severe acute pancreatitis. World J Gastroenterol 12:7666–7670PubMedGoogle Scholar
  59. 59.
    Yang R, Harada T, Mollen KP, Prince JM, Levy RM, Englert JA, Gallowitsch-Puerta M, Yang L, Yang H, Tracey KJ, Harbrecht BG, Billiar TR, Fink MP (2006) Anti-HMGB1 neutralizing antibody ameliorates gut barrier dysfunction and improves survival after hemorrhagic shock. Mol Med 12:105–114PubMedCrossRefGoogle Scholar
  60. 60.
    Wang H, Ward MF, Sama AE (2009) Novel HMGB1-inhibiting therapeutic agents for experimental sepsis. Shock 32:348–357PubMedCrossRefGoogle Scholar
  61. 61.
    Cai B, Chen F, Lin X, Miller E, Szabo C, Deitch EA, Ulloa L (2009) Anti-inflammatory adjuvant in resuscitation fluids improves survival in hemorrhage. Crit Care Med 37:860–868PubMedCrossRefGoogle Scholar
  62. 62.
    Yang ZY, Ling Y, Yin T, Tao J, Xiong JX, Wu HS, Wang CY (2008) Delayed ethyl pyruvate therapy attenuates experimental severe acute pancreatitis via reduced serum high mobility group box 1 levels in rats. World J Gastroenterol 14:4546–4550PubMedCrossRefGoogle Scholar
  63. 63.
    Humpert PM, Lukic IK, Thorpe SR, Hofer S, Awad EM, Andrassy M, Deemer EK, Kasper M, Schleicher E, Schwaninger M, Weigand MA, Nawroth PP, Bierhaus A (2009) AGE-modified albumin containing infusion solutions boosts septicaemia and inflammation in experimental peritonitis. J Leukoc Biol 86:589–597PubMedCrossRefGoogle Scholar
  64. 64.
    Soop A, Sunden-Cullberg J, Albert J, Hallstrom L, Treutiger CJ, Sollevi A (2009) Adenosine infusion attenuates sRAGE in endotoxin-induced inflammation in human volunteers. Acta Physiol (Oxf) 197:47–53CrossRefGoogle Scholar
  65. 65.
    Bopp C, Hofer S, Weitz J, Bierhaus A, Nawroth PP, Martin E, Buchler MW, Weigand MA (2008) sRAGE is elevated in septic patients and associated with patients outcome. J Surg Res 147:79–83PubMedCrossRefGoogle Scholar
  66. 66.
    Kocsis AK, Szabolcs A, Hofner P, Takacs T, Farkas G, Boda K, Mandi Y (2009) Plasma concentrations of high-mobility group box protein 1, soluble receptor for advanced glycation end-products and circulating DNA in patients with acute pancreatitis. Pancreatology 9:383–391PubMedCrossRefGoogle Scholar
  67. 67.
    Calfee CS, Ware LB, Eisner MD, Parsons PE, Thompson BT, Wickersham N, Matthay MA (2008) Plasma receptor for advanced glycation end-products and clinical outcomes in acute lung injury. Thorax 63:1083–1089PubMedCrossRefGoogle Scholar
  68. 68.
    Determann RM, Wolthuis EK, Choi G, Bresser P, Bernard A, Lutter R, Schultz MJ (2008) Lung epithelial injury markers are not influenced by use of lower tidal volumes during elective surgery in patients without preexisting lung injury. Am J Physiol Lung Cell Mol Physiol 294:L344–L350PubMedCrossRefGoogle Scholar
  69. 69.
    Creagh-Brown B, Hector L, Lagan A, Burke-Gaffney A, Quinlan G, Evans T (2009) RAGE ligands are implicated in the development of sirs after surgery necessitating cardiopulmonary bypass. Am J Respir Crit Care Med 179:A1163Google Scholar
  70. 70.
    Makam M, Diaz D, Laval J, Gernez Y, Conrad CK, Dunn CE, Davies ZA, Moss RB, Herzenberg LA, Tirouvanziam R (2009) Activation of critical, host-induced, metabolic and stress pathways marks neutrophil entry into cystic fibrosis lungs. Proc Natl Acad Sci U S A 106:5779–5783PubMedCrossRefGoogle Scholar
  71. 71.
    Angus DC, Yang L, Kong L, Kellum JA, Delude RL, Tracey KJ, Weissfeld L (2007) Circulating high-mobility group box 1 (HMGB1) concentrations are elevated in both uncomplicated pneumonia and pneumonia with severe sepsis. Crit Care Med 35:1061–1067PubMedCrossRefGoogle Scholar
  72. 72.
    Sunden-Cullberg J, Norrby-Teglund A, Rouhiainen A, Rauvala H, Herman G, Tracey KJ, Lee ML, Andersson J, Tokics L, Treutiger CJ (2005) Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Crit Care Med 33:564–573PubMedCrossRefGoogle Scholar
  73. 73.
    Peltz E, Moore E, Eckels PC, Damle SS, Tsuruta Y, Johnson JL, Sauaia A, Silliman CC, Banerjee A, Abraham E (2009) HMGB1 is markedly elevated within six hours of mechanical trauma in humans. Shock 32:17–22PubMedCrossRefGoogle Scholar
  74. 74.
    Gaini S, Pedersen SS, Koldkjaer OG, Pedersen C, Moller HJ (2007) High mobility group box-1 protein in patients with suspected community-acquired infections and sepsis: a prospective study. Crit Care 11:R32PubMedCrossRefGoogle Scholar
  75. 75.
    Gibot S, Massin F, Cravoisy A, Barraud D, Nace L, Levy B, Bollaert PE (2007) High-mobility group box 1 protein plasma concentrations during septic shock. Intensive Care Med 33:1347–1353PubMedCrossRefGoogle Scholar
  76. 76.
    Karlsson S, Pettila V, Tenhunen J, Laru-Sompa R, Hynninen M, Ruokonen E (2008) HMGB1 as a predictor of organ dysfunction and outcome in patients with severe sepsis. Intensive Care Med 34:1046–1053PubMedCrossRefGoogle Scholar
  77. 77.
    Alleva LM, Yang H, Tracey KJ, Clark IA (2005) High mobility group box 1 (HMGB1) protein: possible amplification signal in the pathogenesis of falciparum malaria. Trans R Soc Trop Med Hyg 99:171–174PubMedCrossRefGoogle Scholar
  78. 78.
    Ombrellino M, Wang H, Ajemian MS, Talhouk A, Scher LA, Friedman SG, Tracey KJ (1999) Increased serum concentrations of high-mobility-group protein 1 in haemorrhagic shock. Lancet 354:1446–1447PubMedCrossRefGoogle Scholar
  79. 79.
    Lantos J, Foldi V, Roth E, Weber G, Bogar L, Csontos C (2009) Burn trauma induces early Hmgb1 release in patients: its correlation with cytokines. Shock 33:562–567Google Scholar
  80. 80.
    Hatada T, Wada H, Nobori T, Okabayashi K, Maruyama K, Abe Y, Uemoto S, Yamada S, Maruyama I (2005) Plasma concentrations and importance of high mobility group box protein in the prognosis of organ failure in patients with disseminated intravascular coagulation. Thromb Haemost 94:975–979PubMedGoogle Scholar
  81. 81.
    van Zoelen MA, Laterre PF, van Veen SQ, van Till JW, Wittebole X, Bresser P, Tanck MW, Dugernier T, Ishizaka A, Boermeester MA, van der Poll T (2007) Systemic and local high mobility group box 1 concentrations during severe infection. Crit Care Med 35:2799–2804PubMedCrossRefGoogle Scholar
  82. 82.
    Nguyen D, Spapen H, Schiettecatte J, Delvaux R, Hubloue I, Huyghens L (2007) S100B protein: a biomarker of organ dysfunction in patients with severe sepsis and septic shock? In: Proceedings of American Thoracic Society, San Francisco (abstract A441)Google Scholar
  83. 83.
    Nguyen DN, Spapen H, Su F, Schiettecatte J, Shi L, Hachimi-Idrissi S, Huyghens L (2006) Elevated serum levels of S-100beta protein and neuron-specific enolase are associated with brain injury in patients with severe sepsis and septic shock. Crit Care Med 34:1967–1974PubMedCrossRefGoogle Scholar
  84. 84.
    Unden J, Bellner J, Eneroth M, Alling C, Ingebrigtsen T, Romner B (2005) Raised serum S100B levels after acute bone fractures without cerebral injury. J Trauma 58:59–61PubMedCrossRefGoogle Scholar
  85. 85.
    Rasmussen LS, Christiansen M, Eliasen K, Sander-Jensen K, Moller JT (2002) Biochemical markers for brain damage after cardiac surgery—time profile and correlation with cognitive dysfunction. Acta Anaesthesiol Scand 46:547–551PubMedCrossRefGoogle Scholar
  86. 86.
    Mazzini GS, Schaf DV, Vinade ER, Horowitz E, Bruch RS, Brunm LM, Goncalves CA, Bacal F, Souza DO, Portela LV, Bordignon S (2007) Increased S100B serum levels in dilated cardiomyopathy patients. J Card Fail 13:850–854PubMedCrossRefGoogle Scholar
  87. 87.
    Leonard S, Watts A, Parmar K, Wendon J, Hunt B (1999) Serum S100 as a marker of cerebral injury in acute liver failure (ALF) and during orthotopic liver transplantation (OLT). Crit Care 3:P223Google Scholar
  88. 88.
    Foell D, Roth J (2004) Proinflammatory S100 proteins in arthritis and autoimmune disease. Arthritis Rheum 50:3762–3771PubMedCrossRefGoogle Scholar
  89. 89.
    Sander J, Fagerhol MK, Bakken JS, Dale I (1984) Plasma levels of the leucocyte L1 protein in febrile conditions: relation to aetiology, number of leucocytes in blood, blood sedimentation reaction and C-reactive protein. Scand J Clin Lab Invest 44:357–362PubMedCrossRefGoogle Scholar
  90. 90.
    Boelke E, Storck M, Buttenschoen K, Berger D, Hannekum A (2000) Endotoxemia and mediator release during cardiac surgery. Angiology 51:743–749PubMedCrossRefGoogle Scholar
  91. 91.
    Payen D, Lukaszewicz AC, Belikova I, Faivre V, Gelin C, Russwurm S, Launay JM, Sevenet N (2008) Gene profiling in human blood leucocytes during recovery from septic shock. Intensive Care Med 34:1371–1376PubMedCrossRefGoogle Scholar
  92. 92.
    Hofmann MA, Drury S, Hudson BI, Gleason MR, Qu W, Lu Y, Lalla E, Chitnis S, Monteiro J, Stickland MH, Bucciarelli LG, Moser B, Moxley G, Itescu S, Grant PJ, Gregersen PK, Stern DM, Schmidt AM (2002) RAGE and arthritis: the G82S polymorphism amplifies the inflammatory response. Genes Immun 3:123–135PubMedCrossRefGoogle Scholar
  93. 93.
    Kornblit B, Munthe-Fog L, Madsen HO, Strom J, Vindelov L, Garred P (2008) Association of HMGB1 polymorphisms with outcome in patients with systemic inflammatory response syndrome. Crit Care 12:R83PubMedCrossRefGoogle Scholar
  94. 94.
    Uchida T, Shirasawa M, Ware LB, Kojima K, Hata Y, Makita K, Mednick G, Matthay ZA, Matthay MA (2006) Receptor for advanced glycation end-products is a marker of type I cell injury in acute lung injury. Am J Respir Crit Care Med 173:1008–1015PubMedCrossRefGoogle Scholar
  95. 95.
    Su X, Looney MR, Gupta N, Matthay MA (2009) Receptor for advanced glycation end-products (RAGE) is an indicator of direct lung injury in models of experimental lung injury. Am J Physiol Lung Cell Mol Physiol 297:L1–L5PubMedCrossRefGoogle Scholar
  96. 96.
    Abraham E, Arcaroli J, Carmody A, Wang H, Tracey KJ (2000) HMG-1 as a mediator of acute lung inflammation. J Immunol 165:2950–2954PubMedGoogle Scholar
  97. 97.
    Zhang H, Tasaka S, Shiraishi Y, Fukunaga K, Yamada W, Seki H, Ogawa Y, Miyamoto K, Nakano Y, Hasegawa N, Miyasho T, Maruyama I, Ishizaka A (2008) Role of soluble receptor for advanced glycation end products on endotoxin-induced lung injury. Am J Respir Crit Care Med 178:356–362PubMedCrossRefGoogle Scholar
  98. 98.
    Hagiwara S, Iwasaka H, Hasegawa A, Koga H, Noguchi T (2008) Effects of hyperglycemia and insulin therapy on high mobility group box 1 in endotoxin-induced acute lung injury in a rat model. Crit Care Med 36:2407–2413PubMedCrossRefGoogle Scholar
  99. 99.
    Sternberg DI, Gowda R, Mehra D, Qu W, Weinberg A, Twaddell W, Sarkar J, Wallace A, Hudson B, D’Ovidio F, Arcasoy S, Ramasamy R, D’Armiento J, Schmidt AM, Sonett JR (2008) Blockade of receptor for advanced glycation end product attenuates pulmonary reperfusion injury in mice. J Thorac Cardiovasc Surg 136:1576–1585PubMedCrossRefGoogle Scholar
  100. 100.
    Ogawa EN, Ishizaka A, Tasaka S, Koh H, Ueno H, Amaya F, Ebina M, Yamada S, Funakoshi Y, Soejima J, Moriyama K, Kotani T, Hashimoto S, Morisaki H, Abraham E, Takeda J (2006) Contribution of high-mobility group box-1 to the development of ventilator-induced lung injury. Am J Respir Crit Care Med 174:400–407PubMedCrossRefGoogle Scholar
  101. 101.
    Calfee CS, Budev MM, Matthay MA, Church G, Brady S, Uchida T, Ishizaka A, Lara A, Ranes JL, deCamp MM, Arroliga AC (2007) Plasma receptor for advanced glycation end-products predicts duration of ICU stay and mechanical ventilation in patients after lung transplantation. J Heart Lung Transplant 26:675–680PubMedCrossRefGoogle Scholar
  102. 102.
    Briot R, Frank JA, Uchida T, Lee JW, Calfee CS, Matthay MA (2009) Elevated levels of the receptor for advanced glycation end products, a marker of alveolar epithelial type I cell injury, predict impaired alveolar fluid clearance in isolated perfused human lungs. Chest 135:269–275PubMedCrossRefGoogle Scholar
  103. 103.
    Wittkowski H, Sturrock A, van Zoelen MA, Viemann D, van der Poll T, Hoidal JR, Roth J, Foell D (2007) Neutrophil-derived S100A12 in acute lung injury and respiratory distress syndrome. Crit Care Med 35:1369–1375PubMedCrossRefGoogle Scholar
  104. 104.
    Lorenz E, Muhlebach MS, Tessier PA, Alexis NE, Duncan Hite R, Seeds MC, Peden DB, Meredith W (2008) Different expression ratio of S100A8/A9 and S100A12 in acute and chronic lung diseases. Respir Med 102:567–573PubMedCrossRefGoogle Scholar
  105. 105.
    van Zoelen MA, Ishizaka A, Wolthuls EK, Choi G, van der Poll T, Schultz MJ (2008) Pulmonary levels of high-mobility group box 1 during mechanical ventilation and ventilator-associated pneumonia. Shock 29:441–445PubMedGoogle Scholar
  106. 106.
    Boyd JH, Kan B, Roberts H, Wang Y, Walley KR (2008) S100A8 and S100A9 mediate endotoxin-induced cardiomyocyte dysfunction via the receptor for advanced glycation end products. Circ Res 102:1239–1246PubMedCrossRefGoogle Scholar
  107. 107.
    Tzeng H-P, Fan J, Vallejo JG, Dong JW, Chen X, Houser SR, Mann DL (2008) Negative inotropic effects of high-mobility group box 1 protein in isolated contracting cardiac myocytes. Am J Physiol Heart Circ Physiol 294:H1490–H1496PubMedCrossRefGoogle Scholar
  108. 108.
    Xu H, Su Z, Wu J, Yang M, Penninger JM, Martin CM, Kvietys PR, Rui T (2010) The alarmin cytokine, high mobility group box 1, is produced by viable cardiomyocytes and mediates the lipopolysaccharide-induced myocardial dysfunction via a TLR4/phosphatidylinositol 3-kinase gamma pathway. J Immunol 184:1492–1498PubMedCrossRefGoogle Scholar
  109. 109.
    Hagiwara S, Iwasaka H, Hasegawa A, Asai N, Noguchi T (2009) Hyperglycemia contributes to cardiac dysfunction in a lipopolysaccharide-induced systemic inflammation model. Crit Care Med 37:2223–2227PubMedCrossRefGoogle Scholar
  110. 110.
    Ince CP, Sinaasappel MP (1999) Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med 27:1369–1377PubMedCrossRefGoogle Scholar
  111. 111.
    Andrassy M, Volz HC, Igwe JC, Funke B, Eichberger SN, Kaya Z, Buss S, Autschbach F, Pleger ST, Lukic IK, Bea F, Hardt SE, Humpert PM, Bianchi ME, Mairbaurl H, Nawroth PP, Remppis A, Katus HA, Bierhaus A (2008) High-mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation 117:3216–3226PubMedCrossRefGoogle Scholar
  112. 112.
    Bucciarelli LG, Ananthakrishnan R, Hwang YC, Kaneko M, Song F, Sell DR, Strauch C, Monnier VM, Yan SF, Schmidt AM, Ramasamy R (2008) RAGE and modulation of ischemic injury in the diabetic myocardium. Diabetes 57:1941–1951PubMedCrossRefGoogle Scholar
  113. 113.
    Rittirsch D, Hoesel LM, Ward PA (2007) The disconnect between animal models of sepsis and human sepsis. J Leukoc Biol 81:137–143PubMedCrossRefGoogle Scholar
  114. 114.
    van Zoelen MA, Schmidt AM, Florquin S, Meijers JC, de Beer R, de Vos AF, Nawroth PP, Bierhaus A, van der Poll T (2009) Receptor for advanced glycation end products facilitates host defense during Escherichia coli-induced abdominal sepsis in mice. J Infect Dis 200:765–773PubMedCrossRefGoogle Scholar
  115. 115.
    Pullerits R, Brisslert M, Jonsson IM, Tarkowski A (2006) Soluble receptor for advanced glycation end products triggers a proinflammatory cytokine cascade via beta2 integrin Mac-1. Arthritis Rheum 54:3898–3907PubMedCrossRefGoogle Scholar
  116. 116.
    Unsinger J, McDonough JS, Shultz LD, Ferguson TA, Hotchkiss RS (2009) Sepsis-induced human lymphocyte apoptosis and cytokine production in “humanized” mice. J Leukoc Biol 86:219–227PubMedCrossRefGoogle Scholar
  117. 117.
    Su J, Li X, Cui X, Li Y, Fitz Y, Hsu L, Mani H, Quezado M, Eichacker PQ (2008) Ethyl pyruvate decreased early nuclear factor-kappaB levels but worsened survival in lipopolysaccharide-challenged mice. Crit Care Med 36:1059–1067PubMedCrossRefGoogle Scholar

Copyright information

© Copyright jointly held by Springer and ESICM 2010

Authors and Affiliations

  • Benedict C. Creagh-Brown
    • 1
    • 2
  • Gregory J. Quinlan
    • 1
    • 2
  • Timothy W. Evans
    • 1
    • 2
  • Anne Burke-Gaffney
    • 1
    • 2
  1. 1.Unit of Critical Care, Respiratory Science, National Heart and Lung Institute Division, Faculty of MedicineImperial CollegeLondonUK
  2. 2.NIHR Respiratory Disease Biomedical Research UnitRoyal Brompton and Harefield NHS Foundation TrustLondonUK

Personalised recommendations