Intensive Care Medicine

, Volume 36, Issue 8, pp 1309–1317 | Cite as

Invasive and noninvasive assessment of cerebral oxygenation in patients with severe traumatic brain injury

  • Santiago R. Leal-Noval
  • Aurelio Cayuela
  • Victoria Arellano-Orden
  • Antonio Marín-Caballos
  • Vicente Padilla
  • Carmen Ferrándiz-Millón
  • Yael Corcia
  • Claudio García-Alfaro
  • Rosario Amaya-Villar
  • Francisco Murillo-Cabezas



The aim of this study is to investigate the relationship between invasive brain tissue oxygen pressure (PbrO2) and noninvasive regional transcranial oxygen saturation (rSO2) in 22 stable patients with severe traumatic brain injury (TBI) during a 16 h period.


This was a prospective, observational study carried out in the Neurocritical Care Unit of a level 1 trauma center in a teaching hospital. A total of 41,809 paired records for neuromonitoring variables were analyzed and compared.


A direct and independent correlation between rSO2 and PbrO2 was confirmed through adjusted [β coefficient and (95% confidence interval, CI) = 0.36 (0.35–0.37)] and logistic [PbrO2 ≥15 mmHg, as a dependent variable; adjusted odds ratio (AOR) and (95% CI) = 1.11 (1.10–1.12)] regression analyses. A receiver-operating characteristic (ROC) curve demonstrated that rSO2 had low accuracy for detecting moderate (PbrO2 ≤15 mmHg) intracerebral hypoxia [area under curve (AUC) = 0.62], with the likelihood ratio for a positive test (LR+) = 1.2 for an optimal cutoff of rSO2 ≤70%. In contrast, the ROC analysis showed that rSO2 was moderately accurate for detecting severe (PbrO2 ≤12 mmHg) intracerebral hypoxemia (AUC = 0.82; LR+ = 5.3) for an optimal cutoff of rSO2 ≤60%.


In patients with severe TBI, PbrO2 and rSO2 were directly and significantly related. Severe intracerebral hypoxia was better detected by rSO2 than was moderate intracerebral hypoxia. However, the diagnostic accuracy of rSO2 was limited, and this measure should not be considered a substitute for routine PbrO2 monitoring.


Brain hypoxia Brain tissue oxygen pressure Cerebral oxygenation Neurotrauma NIRS rSO2 PbrO2 Severe traumatic brain injury and transfusion 



Cerebral perfusion pressure


End-tidal CO2


Oxygen inspired fraction


Glasgow Coma Scale


Intracranial pressure


Mean arterial pressure


Near-infrared spectroscopy


Oxygen arterial pressure


Brain tissue oxygen pressure


Regional transcranial oxygen saturation


Jugular venous oxygen saturation


Traumatic Coma Data Bank


Traumatic brain injury


Intracranial temperature



Supported by Spanish Government funds (Fondo de Investigación Sanitaria–FIS–Proyecto de Investigación: PI 081069) and by Consejería de Salud de la Junta de Andalucía. Proyecto de Investigación 0157/2006.


  1. 1.
    Andrews PJ, Citerio G, Longhi L, Polderman K, Sahuquillo J, Vajkoczy P, Neuro-Intensive Care and Emergency Medicine (NICEM), Section of the European Society of Intensive Care Medicine (2008) NICEM consensus on neurological monitoring in acute neurological disease. Intensive Care Med 34:1362–1370CrossRefPubMedGoogle Scholar
  2. 2.
    Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons, Joint Section on Neurotrauma and Critical Care, AANS/CNS, Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, Manley GT, Nemecek A, Newell DW, Rosenthal G, Schouten J, Shutter L, Timmons SD, Ullman JS, Videtta W, Wilberger JE, Wright DW (2007) Guidelines for the management of severe traumatic brain injury. X. Brain oxygen monitoring and thresholds. J Neurotrauma 24(supp 1):S65–S70PubMedGoogle Scholar
  3. 3.
    Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons, Joint Section on Neurotrauma and Critical Care, AANS/CNS, Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, Manley GT, Nemecek A, Newell DW, Rosenthal G, Schouten J, Shutter L, Timmons SD, Ullman JS, Videtta W, Wilberger JE, Wright DW (2007) Guidelines for the management of severe traumatic brain injury. VI. Indications for intracranial pressure monitoring. J Neurotrauma 24(supp 1):S37–S44PubMedGoogle Scholar
  4. 4.
    Gracias VH, Guillamondegui OD, Stiefel MF, Wilensky EM, Bloom S, Gupta R, Pryor JP, Reilly PM, Leroux PD, Schwab CW (2004) Cerebral cortical oxygenation: a pilot study. J Trauma 56:469–474CrossRefPubMedGoogle Scholar
  5. 5.
    Yao FS, Tseng CC, Ho CY, Levin SK, Illner P (2004) Cerebral oxygen desaturation is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth 18:552–558CrossRefPubMedGoogle Scholar
  6. 6.
    Tobias JD (2006) Cerebral oxygenation monitoring: near-infrared spectroscopy. Expert Rev Med Dev 3:235–243CrossRefGoogle Scholar
  7. 7.
    Yoshitani K, Kawaguchi M, Miura N, Okuno T, Kanoda T, Ohnishi Y, Kuro M (2007) Effects of hemoglobin concentration, skull thickness, and the area of the cerebrospinal fluid layer on NIRS measurements. Anesthesiology 106:458–462CrossRefPubMedGoogle Scholar
  8. 8.
    Lewis SB, Myburgh JA, Thornton EL, Reilly PL (1996) Cerebral oxygenation monitoring by NIRS is not clinically useful in patients with severe closed-head injury: a comparison with jugular venous bulb oximetry. Crit Care Med 24:1334–1338CrossRefPubMedGoogle Scholar
  9. 9.
    McLeod AD, Igielman F, Elwell C, Cope M, Smith M (2003) Measuring cerebral oxygenation during normobaric hyperoxia: a comparison of tissue microprobes, NIRS, and jugular venous oximetry in head injury. Anesth Analg 97:851–856CrossRefPubMedGoogle Scholar
  10. 10.
    Dunham CM, Ransom KJ, Flowers LL, Siegal JD, Kohli CM (2004) Cerebral hypoxia in severely brain injured patients is associated with admission Glasgow Coma Scale Score, computed tomographic severity, cerebral perfusion pressure, and survival. J Trauma 56:482–491CrossRefPubMedGoogle Scholar
  11. 11.
    Rothoerl RD, Faltermeier R, Burger R, Woertgen C, Brawanski A (2002) Dynamic correlation between tissue PO2 and near infrared spectroscopy. Acta Neurochir Suppl 81:311–313Google Scholar
  12. 12.
    Brawanski A, Faltermeier R, Rothoerl RD, Woertgen C (2002) Comparison of near-infrared spectroscopy and tissue PO2 time series in patients after severe head injury and aneurismal subarachnoid hemorrhage. J Cereb Blood Flow Metab 22:605–611CrossRefPubMedGoogle Scholar
  13. 13.
    Marín-Caballos AJ, Murillo-Cabezas F, Cayuela-Domínguez A, Domínguez-Roldán JM, Rincón-Ferrari MD, Valencia-Anguita J, Flores-Cordero JM, Muñoz-Sánchez MA (2005) Cerebral perfusion pressure and risk of brain hypoxia in severe head injury: a prospective observational study. Crit Care 9:R670–R676CrossRefPubMedGoogle Scholar
  14. 14.
    Marín-Caballos AJ, Murillo-Cabezas F, Domínguez-Roldan JM, Leal-Noval SR, Rincón-Ferrari MD, Muñoz-Sánchez MA (2008) Monitoring of tissue oxygen pressure (PtiO2) in cerebral hypoxia: diagnostic and therapeutic approach. Med Intensiva 32:81–90CrossRefPubMedGoogle Scholar
  15. 15.
    Akobeng AK (2006) Understanding diagnostic tests 2: likelihood ratios, pre- and post-test probabilities and their use in clinical practice. Acta Paediatry 96:487–491CrossRefGoogle Scholar
  16. 16.
    Fisher JE, Bachman LM, Jaeschke R (2003) A readers’ guide to the interpretation of diagnostic test properties: clinical example of sepsis. Intensive Care Med 29:1043–1051CrossRefGoogle Scholar
  17. 17.
    Cruz J (1998) The first decade of continuous monitoring of jugular bulb oxyhemoglobin saturation: management strategies and clinical outcome. Crit Care Med 26:344–351CrossRefPubMedGoogle Scholar
  18. 18.
    van den Brink WA, van Santbrink H, Steyerberg EW, Avezaat CJ, Suazo JA, Hogesteeger C, Jansen WJ, Kloos LM, Vermeulen J, Maas AI (2000) Brain oxygen tension in severe head injury. Neurosurgery 46:868–878CrossRefPubMedGoogle Scholar
  19. 19.
    Valadka AB, Gopinath SP, Contant CF, Uzura M, Robertson CS (1998) Relatioship of brain tissue PO2 to outcome after severe head injury. Crit Care Med 26:1576–1581CrossRefPubMedGoogle Scholar
  20. 20.
    Stiefel MF, Spiotta A, Gracias VH, Garuffe AM, Guillamondegui O, Maloney-Wilensky E, Bloom S, Grady MS, Le Roux PD (2005) Reduced mortality in patients with severe traumatic brain injury treated with brain tissue oxygen monitoring. J Neurosurg 103:805–811CrossRefPubMedGoogle Scholar
  21. 21.
    Narotam PK, Morrison JF, Nathoo N (2009) Brain tissue monitoring in traumatic brain injury and major trauma: outcome analysis of a brain tissue oxygen-directed therapy. J Neurosurg 111:672–682CrossRefPubMedGoogle Scholar
  22. 22.
    Longhi L, Pagan F, Valeriani V, Magnoni S, Zanier ER, Conte V, Branca V, Stocchetti N (2007) Monitoring brain tissue oxygen tension in brain-injured patients reveals hypoxic episodes in normal-appearing and in peri-focal tissue. Intensive Care Med 33:2136–2142CrossRefPubMedGoogle Scholar
  23. 23.
    Rose JC, Neill TA, Hemphill JC (2006) Continuous monitoring of the microcirculation in neurocritical care: an update of brain tissue oxygenation. Curr Opin Crit Care 12:97–102CrossRefPubMedGoogle Scholar
  24. 24.
    Rosenthal G, Hemphill JC III, Sorani M, Martin C, Morabito D, Obrist WD, Manley GT (2008) Brain tissue tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury. Crit Care Med 36:1917–1924CrossRefPubMedGoogle Scholar
  25. 25.
    Leal-Noval SR, Rincón-Ferrari MD, Marin-Niebla A, Cayuela A, Arellano-Orden V, Marín-Caballos A, Amaya-Villar R, Ferrándiz-Millón C, Murillo-Cabeza F (2006) Transfusion of erythrocyte concentrates produces a variable increment on cerebral oxygenation in patients with severe traumatic brain injury: a preliminary study. Intensive Care Med 32:1733–1740CrossRefPubMedGoogle Scholar
  26. 26.
    Smith M, Elwell C (2009) Near-infrared spectroscopy: shedding light on the injured brain. Anesth Analg 108:1055–1057CrossRefPubMedGoogle Scholar
  27. 27.
    Watzman HM, Kurth CD, Montenegro LM, Rome J, Steven JM, Nicolson SC (2000) Arterial and venous contributions to near-infrared cerebral oximetry. Anesthesiology 93:947–953CrossRefPubMedGoogle Scholar
  28. 28.
    Shah N, Trivedi NK, Clack SL, Shah M, Shah PP, Barker S (2000) Impact of hypoxemia on the performance of cerebral oximeter in volunteer subjects. J Neurosurg Anesthesiol 12:201–209CrossRefPubMedGoogle Scholar
  29. 29.
    Stoneham MD, Lodi O, de Beer TC, Sear JW (2008) Increased oxygen administration improves cerebral oxygenation in patients undergoing awake carotid surgery. Anesth Analg 107:1670–1675CrossRefPubMedGoogle Scholar
  30. 30.
    Naidech AM, Bendok BR, Ault ML, Bleck TP (2008) Monitoring with the Somanetics INVOS 5100C after aneurysmal subarachnoid hemorrhage. Neurocrit Care 9:326–331CrossRefPubMedGoogle Scholar
  31. 31.
    Skhirtladze K, Birkenberg B, Mora B, Moritz A, Ince I, Ankersmit HJ, Steinlechner B, Dworschak M (2009) Cerebral desaturation during cardiac arrest: its relation to arrest duration and left ventricular pump function. Crit Care Med 37:471–475CrossRefPubMedGoogle Scholar
  32. 32.
    Matsumoto S, Nakahara I, Higashi T, Iwamuro Y, Watanabe Y, Takahashi K, Ando M, Takezawa M, Kira JI (2009) Near-infrared spectroscopy in carotid artery stenting predicts cerebral hyperperfusion syndrome. Neurology 28:1512–1518CrossRefGoogle Scholar
  33. 33.
    Casati A, Fanelli G, Pietropaoli P, Proietti R, Tufano R, Danelli G, Fierro G, De Cosmo G, Servillo G (2005) Continuous monitoring of cerebral oxygen saturation in elderly patients undergoing major abdominal surgery minimizes brain exposure to potential hypoxia. Anesth Analg 101:740–747CrossRefPubMedGoogle Scholar
  34. 34.
    Brady KM, Lee JK, Kibler KK, Smielewski P, Czosnyka M, Easley RB, Koehler RC, Shaffner DH (2007) Continuous time–domain analysis of cerebrovascular autoregulation using near-infrared spectroscopy. Stroke 38:2818–2825CrossRefPubMedGoogle Scholar
  35. 35.
    Steiner LA, Pfister D, Strebel SP, Radolovich D, Smielewski P, Czosnyka M (2009) Near-infrared spectroscopy can monitor dynamic cerebral autoregulation in adults. Neurocrit Care 10:122–128CrossRefPubMedGoogle Scholar
  36. 36.
    Nagdyman N, Ewert P, Peters B, Miera O, Fleck T, Berger F (2008) Comparison of different near-infrared spectroscopy cerebral oxygenation indices with central venous and jugular venous oxygenation saturation in children. Paediatric Anaesth 18:160–166Google Scholar
  37. 37.
    Tobias JD (2008) Cerebral oximetry monitoring with near infrared spectroscopy detects alterations in oxygenation before pulse oximetry. J Intensive Care Med 23:384–388CrossRefPubMedGoogle Scholar
  38. 38.
    Kahraman S, Kayali H, Atabey C, Acar F, Gocmen S (2006) The accuracy of near-infrared spectroscopy in detection of subdural and epidural hematomas. J Trauma 61:1480–1483CrossRefPubMedGoogle Scholar
  39. 39.
    Büchner K, Meixensberger J, Dings J, Roosen K (2000) Near-infrared spectroscopy not useful to monitor cerebral oxygenation after severe brain injury. Zentralbl Neurochir 61:69–73CrossRefPubMedGoogle Scholar
  40. 40.
    Marcin JP (2007) Size matters to a model’s fit. Crit Care Med 35:2212–2213CrossRefPubMedGoogle Scholar

Copyright information

© Copyright jointly held by Springer and ESICM 2010

Authors and Affiliations

  • Santiago R. Leal-Noval
    • 1
    • 3
  • Aurelio Cayuela
    • 2
  • Victoria Arellano-Orden
    • 1
  • Antonio Marín-Caballos
    • 1
  • Vicente Padilla
    • 1
  • Carmen Ferrándiz-Millón
    • 1
  • Yael Corcia
    • 1
  • Claudio García-Alfaro
    • 1
  • Rosario Amaya-Villar
    • 1
  • Francisco Murillo-Cabezas
    • 1
  1. 1.Neuro Critical Care DivisionHospital Universitario “Virgen del Rocío”SevilleSpain
  2. 2.Statistical DivisionHospital Universitario “Virgen del Rocío”SevilleSpain
  3. 3.Servicio de Cuidados Críticos y Urgencias. Instituto de Biomedicina de Sevilla (IBIS)Hospital Universitario “Virgen del Rocío”SevilleSpain

Personalised recommendations