Intensive Care Medicine

, Volume 36, Issue 9, pp 1602–1608 | Cite as

Long-term evaluation of granulocyte-colony stimulating factor on hypoxic-ischemic brain damage in infant rats

  • Nancy Fathali
  • Tim Lekic
  • John H. Zhang
  • Jiping Tang
Experimental

Abstract

Purpose

Hypoxia-ischemia (HI), as a major cause of fetal brain damage, has long-lasting neurological implications. Therefore, therapeutic interventions that attenuate the neuropathological outcome of HI while also improving the neurofunctional outcome are of paramount clinical importance. The aim of this study was to investigate the long-term functional and protective actions of granulocyte-colony stimulating factor (G-CSF) treatment in an experimental model of cerebral HI.

Methods

Postnatal day-7 Sprague-Dawley rats were subjected to HI surgery, which entailed ligation of the right common carotid artery followed by 2 h of hypoxia (8% O2). Treatment consisted of subcutaneous injection of G-CSF at 1 h after hypoxia followed by an additional one injection per day for 5 days (6 total injections) or for 10 days (11 total injections). Animals were euthanized 5 weeks post-insult for extensive evaluation of neurological deficits and assessment of brain, spleen, heart, and liver damage.

Results

G-CSF treatment promoted somatic growth and prevented brain atrophy and underdevelopment of the heart. Moreover, reflexes, limb placing, muscle strength, motor coordination, short-term memory, and exploratory behavior were all significantly improved by both G-CSF dosing regimens.

Conclusions

Long-term neuroprotection afforded by G-CSF in both morphological and functional parameters after a hypoxic-ischemic event in the neonate provides a rationale for exploring clinical translation.

Keywords

G-CSF Neurobehavior Neonatal Neuroprotection Stroke Hypoxia-ischemia 

Notes

Acknowledgments

Source of funding is NIH grant NS060936-01A2 to J.T.

Conflict of interest statement

None.

References

  1. 1.
    Hermans RH, Hunter DE, McGivern RF, Cain CD, Longo LD (1992) Behavioral sequelae in young rats of acute intermittent antenatal hypoxia. Neurotoxicol Teratol 14:119–129CrossRefPubMedGoogle Scholar
  2. 2.
    Pazaiti A, Soubasi V, Spandou E, Karkavelas G, Georgiou T, Karalis P, Guiba-Tziampiri O (2009) Evaluation of long-lasting sensorimotor consequences following neonatal hypoxic-ischemic brain injury in rats: the neuroprotective role of MgSO4. Neonatology 95:33–40CrossRefPubMedGoogle Scholar
  3. 3.
    Lubics A, Reglodi D, Tamas A, Kiss P, Szalai M, Szalontay L, Lengvari I (2005) Neurological reflexes and early motor behavior in rats subjected to neonatal hypoxic-ischemic injury. Behav Brain Res 157:157–165CrossRefPubMedGoogle Scholar
  4. 4.
    Diederich K, Sevimli S, Dorr H, Kosters E, Hoppen M, Lewejohann L, Klocke R, Minnerup J, Knecht S, Nikol S, Sachser N, Schneider A, Gorji A, Sommer C, Schabitz WR (2009) The role of granulocyte-colony stimulating factor (G-CSF) in the healthy brain: a characterization of G-CSF-deficient mice. J Neurosci 29:11572–11581CrossRefPubMedGoogle Scholar
  5. 5.
    Solaroglu I, Cahill J, Tsubokawa T, Beskonakli E, Zhang JH (2009) Granulocyte colony-stimulating factor protects the brain against experimental stroke via inhibition of apoptosis and inflammation. Neurol Res 31:167–172CrossRefPubMedGoogle Scholar
  6. 6.
    Yata K, Matchett GA, Tsubokawa T, Tang J, Kanamaru K, Zhang JH (2007) Granulocyte-colony stimulating factor inhibits apoptotic neuron loss after neonatal hypoxia-ischemia in rats. Brain Res 1145:227–238CrossRefPubMedGoogle Scholar
  7. 7.
    Matchett GA, Calinisan JB, Matchett GC, Martin RD, Zhang JH (2007) The effect of granulocyte-colony stimulating factor in global cerebral ischemia in rats. Brain Res 1136:200–207CrossRefPubMedGoogle Scholar
  8. 8.
    Meuer K, Pitzer C, Teismann P, Kruger C, Goricke B, Laage R, Lingor P, Peters K, Schlachetzki JC, Kobayashi K, Dietz GP, Weber D, Ferger B, Schabitz WR, Bach A, Schulz JB, Bahr M, Schneider A, Weishaupt JH (2006) Granulocyte-colony stimulating factor is neuroprotective in a model of Parkinson’s disease. J Neurochem 97:675–686CrossRefPubMedGoogle Scholar
  9. 9.
    Tsai KJ, Tsai YC, Shen CK (2007) G-CSF rescues the memory impairment of animal models of Alzheimer’s disease. J Exp Med 204:1273–1280CrossRefPubMedGoogle Scholar
  10. 10.
    Pitzer C, Kruger C, Plaas C, Kirsch F, Dittgen T, Muller R, Laage R, Kastner S, Suess S, Spoelgen R, Henriques A, Ehrenreich H, Schabitz WR, Bach A, Schneider A (2008) Granulocyte-colony stimulating factor improves outcome in a mouse model of amyotrophic lateral sclerosis. Brain 131:3335–3347CrossRefPubMedGoogle Scholar
  11. 11.
    Schneider A, Kuhn HG, Schabitz WR (2005) A role for G-CSF (granulocyte-colony stimulating factor) in the central nervous system. Cell Cycle 4:1753–1757PubMedGoogle Scholar
  12. 12.
    Gibson CL, Bath PM, Murphy SP (2005) G-CSF reduces infarct volume and improves functional outcome after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 25:431–439CrossRefPubMedGoogle Scholar
  13. 13.
    Kawada H, Takizawa S, Takanashi T, Morita Y, Fujita J, Fukuda K, Takagi S, Okano H, Ando K, Hotta T (2006) Administration of hematopoietic cytokines in the subacute phase after cerebral infarction is effective for functional recovery facilitating proliferation of intrinsic neural stem/progenitor cells and transition of bone marrow-derived neuronal cells. Circulation 113:701–710CrossRefPubMedGoogle Scholar
  14. 14.
    Schneider A, Kruger C, Steigleder T, Weber D, Pitzer C, Laage R, Aronowski J, Maurer MH, Gassler N, Mier W, Hasselblatt M, Kollmar R, Schwab S, Sommer C, Bach A, Kuhn HG, Schabitz WR (2005) The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Invest 115:2083–2098CrossRefPubMedGoogle Scholar
  15. 15.
    Jung KH, Chu K, Lee ST, Kim SJ, Sinn DI, Kim SU, Kim M, Roh JK (2006) Granulocyte colony-stimulating factor stimulates neurogenesis via vascular endothelial growth factor with STAT activation. Brain Res 1073–1074:190–201CrossRefPubMedGoogle Scholar
  16. 16.
    Lee ST, Chu K, Jung KH, Ko SY, Kim EH, Sinn DI, Lee YS, Lo EH, Kim M, Roh JK (2005) Granulocyte colony-stimulating factor enhances angiogenesis after focal cerebral ischemia. Brain Res 1058:120–128CrossRefPubMedGoogle Scholar
  17. 17.
    Kim BR, Shim JW, Sung DK, Kim SS, Jeon GW, Kim MJ, Chang YS, Park WS, Choi ES (2008) Granulocyte stimulating factor attenuates hypoxic-ischemic brain injury by inhibiting apoptosis in neonatal rats. Yonsei Med J 49:836–842CrossRefPubMedGoogle Scholar
  18. 18.
    Palmer C, Vannucci RC, Towfighi J (1990) Reduction of perinatal hypoxic-ischemic brain damage with allopurinol. Pediatr Res 27:332–336CrossRefPubMedGoogle Scholar
  19. 19.
    Feng Y, Fratkins JD, LeBlanc MH (2004) Treatment with tamoxifen reduces hypoxic-ischemic brain injury in neonatal rats. Eur J Pharmacol 484:65–74CrossRefPubMedGoogle Scholar
  20. 20.
    Bona E, Johansson BB, Hagberg H (1997) Sensorimotor function and neuropathology five to six weeks after hypoxia-ischemia in seven-day-old rats. Pediatr Res 42:678–683CrossRefPubMedGoogle Scholar
  21. 21.
    Hagberg H, Gilland E, Diemer NH, Andine P (1994) Hypoxia-ischemia in the neonatal rat brain: histopathology after post-treatment with NMDA and non-NMDA receptor antagonists. Biol Neonate 66:205–213CrossRefPubMedGoogle Scholar
  22. 22.
    Hughes RN (2004) The value of spontaneous alternation behavior (SAB) as a test of retention in pharmacological investigations of memory. Neurosci Biobehav Rev 28:497–505CrossRefPubMedGoogle Scholar
  23. 23.
    Gerlai R (2001) Behavioral tests of hippocampal function: simple paradigms complex problems. Behav Brain Res 125:269–277CrossRefPubMedGoogle Scholar
  24. 24.
    Fan LW, Lin S, Pang Y, Lei M, Zhang F, Rhodes PG, Cai Z (2005) Hypoxia-ischemia induced neurological dysfunction and brain injury in the neonatal rat. Behav Brain Res 165:80–90CrossRefPubMedGoogle Scholar
  25. 25.
    Perlman JM, Tack ED, Martin T, Shackelford G, Amon E (1989) Acute systemic organ injury in term infants after asphyxia. Am J Dis Child 143:617–620PubMedGoogle Scholar
  26. 26.
    Hankins GD, Koen S, Gei AF, Lopez SM, Van Hook JW, Anderson GD (2002) Neonatal organ system injury in acute birth asphyxia sufficient to result in neonatal encephalopathy. Obstet Gynecol 99:688–691CrossRefPubMedGoogle Scholar
  27. 27.
    Stola A, Perlman J (2008) Post-resuscitation strategies to avoid ongoing injury following intrapartum hypoxia-ischemia. Semin Fetal Neonatal Med 13:424–431CrossRefPubMedGoogle Scholar
  28. 28.
    Sevimli S, Diederich K, Strecker JK, Schilling M, Klocke R, Nikol S, Kirsch F, Schneider A, Schabitz WR (2009) Endogenous brain protection by granulocyte-colony stimulating factor after ischemic stroke. Exp Neurol 217:328–335CrossRefPubMedGoogle Scholar
  29. 29.
    Hubel K, Engert A (2003) Clinical applications of granulocyte colony-stimulating factor: an update and summary. Ann Hematol 82:207–213PubMedGoogle Scholar
  30. 30.
    Green AR, Cross AJ (1997) Techniques for examining neuroprotective drugs in vivo. Int Rev Neurobiol 40:47–68CrossRefPubMedGoogle Scholar
  31. 31.
    England T, Martin P, Bath PM (2009) Stem cells for enhancing recovery after stroke: a review. Int J Stroke 4:101–110CrossRefPubMedGoogle Scholar
  32. 32.
    Chvojkova Z, Ostadalova I, Ostadal B (2005) Low body weight and cardiac tolerance to ischemia in neonatal rats. Physiol Res 54:357–362PubMedGoogle Scholar
  33. 33.
    Latini G, Mitri BD, Vecchio AD, Chitano G, Felice CD, Zetterstrom R (2004) Foetal growth of kidneys, liver and spleen in intrauterine growth restriction: “programming” causing “metabolic syndrome” in adult age. Acta Pediatr 93:1635–1639CrossRefGoogle Scholar
  34. 34.
    Platzbecker U, Prange-Krex G, Bornhauser M, Koch R, Soucek S, Aikele P, Haack A, Haag C, Schuler U, Berndt A, Rutt C, Ehninger G, Holig K (2001) Spleen enlargement in healthy donors during G-CSF mobilization of PBPCs. Transfusion 41:184–189CrossRefPubMedGoogle Scholar
  35. 35.
    Gibson CL, Jones NC, Prior MJ, Bath PM, Murphy SP (2005) G-CSF suppresses edema formation and reduces interleukin-1beta expression after cerebral ischemia in mice. J Neuropathol Exp Neurol 64:763–769CrossRefPubMedGoogle Scholar
  36. 36.
    Schabitz WR, Kollmar R, Schwaninger M, Juettler E, Bardutzky J, Scholzke MN, Sommer C, Schwab S (2003) Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia. Stroke 34:745–751CrossRefPubMedGoogle Scholar
  37. 37.
    Spandou E, Papadopoulou Z, Soubasi V, Karkavelas G, Simeonidou C, Pazaiti A, Guiba-Tziampiri O (2005) Erythropoietin prevents long-term sensorimotor deficits and brain injury following neonatal hypoxia-ischemia in rats. Brain Res 1045:22–30PubMedGoogle Scholar
  38. 38.
    Truog RD (2008) Ethical assessment of pediatric research protocols. Intensive Care Med 34:198–202CrossRefPubMedGoogle Scholar

Copyright information

© Copyright jointly held by Springer and ESICM 2010

Authors and Affiliations

  • Nancy Fathali
    • 1
  • Tim Lekic
    • 2
  • John H. Zhang
    • 2
    • 3
    • 4
  • Jiping Tang
    • 2
  1. 1.Department of Human Pathology and AnatomyLoma Linda UniversityLoma LindaUSA
  2. 2.Department of PhysiologyLoma Linda UniversityLoma LindaCAUSA
  3. 3.Department of NeurosurgeryLoma Linda UniversityLoma LindaUSA
  4. 4.Department of AnesthesiologyLoma Linda UniversityLoma LindaUSA

Personalised recommendations