Intensive Care Medicine

, Volume 36, Issue 6, pp 949–955 | Cite as

Effects of fluids on microvascular perfusion in patients with severe sepsis

  • Gustavo Ospina-Tascon
  • Ana Paula Neves
  • Giovanna Occhipinti
  • Katia Donadello
  • Gustavo Büchele
  • Davide Simion
  • Maria-Luisa Chierego
  • Tatiana Oliveira Silva
  • Adriana Fonseca
  • Jean-Louis Vincent
  • Daniel De BackerEmail author



To evaluate the effects of fluid administration on microcirculatory alterations in sepsis.


With a Sidestream Dark Field device, we evaluated the effects of fluids on the sublingual microcirculation in 60 patients with severe sepsis. These patients were investigated either within 24 h (early, n = 37) or more than 48 h (late, n = 23) after a diagnosis of severe sepsis. Hemodynamic and microcirculatory measurements were obtained before and 30 min after administration of 1,000 ml Ringer’s lactate (n = 29) or 400 ml 4% albumin (n = 31) solutions.


Fluid administration increased perfused small vessel density from 3.5 (2.9–4.3) to 4.4 (3.7–4.9) n/mm (p < 0.01), through a combined increase in the proportion of perfused small vessels from 69 (62–76) to 79 (71–83) %, p < 0.01) and in small vessel density from 5.3 (4.4–5.9) to 5.6 (4.8–6.3) n/mm (p < 0.01). Importantly, microvascular perfusion increased in the early but not in the late phase of sepsis: the proportion of perfused small vessels increased from 65 (60–72) to 80 (75–84) % (p < 0.01) in the early phase and from 75 (66–80) to 74 (67–81) (p = ns) in the late phase. These microvascular effects of fluids were not related to changes in cardiac index (R 2 = 0.05, p = ns) or mean arterial pressure (R 2 = 0.04, p = ns).


In this non-randomized trial, fluid administration improved microvascular perfusion in the early but not late phase of sepsis. This effect is independent of global hemodynamic effects and of the type of solution.


Microcirculation Cardiac output Colloids Crystalloids 



This study was supported by institutional funds only.

Supplementary material

134_2010_1843_MOESM1_ESM.doc (366 kb)
Supplementary material 1 (DOC 366 kb)


  1. 1.
    Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310CrossRefPubMedGoogle Scholar
  2. 2.
    Hollenberg SM, Dumasius A, Easington C, Colilla SA, Neumann A, Parrillo JE (2001) Characterization of a hyperdynamic murine model of resuscitated sepsis using echocardiography. Am J Respir Crit Care Med 164:891–895PubMedGoogle Scholar
  3. 3.
    Zanotti-Cavazzoni SL, Guglielmi M, Parrillo JE, Walker T, Dellinger RP, Hollenberg SM (2009) Fluid resuscitation influences cardiovascular performance and mortality in a murine model of sepsis. Intensive Care Med 35:748–754CrossRefPubMedGoogle Scholar
  4. 4.
    De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104CrossRefPubMedGoogle Scholar
  5. 5.
    Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent J-L (2004) Persistent microvasculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32:1825–1831CrossRefPubMedGoogle Scholar
  6. 6.
    Spronk PE, Ince C, Gardien MJ, Mathura KR, Oudemans-van Straaten HM, Zandstra DF (2002) Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet 360:1395–1396CrossRefPubMedGoogle Scholar
  7. 7.
    Trzeciak S, Dellinger RP, Parrillo JE, Guglielmi M, Bajaj J, Abate NL, Arnold RC, Colilla S, Zanotti S, Hollenberg SM (2007) Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med 49:88–98CrossRefPubMedGoogle Scholar
  8. 8.
    Trzeciak S, McCoy JV, Phillip DR, Arnold RC, Rizzuto M, Abate NL, Shapiro NI, Parrillo JE, Hollenberg SM (2008) Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med 34:2210–2217CrossRefPubMedGoogle Scholar
  9. 9.
    Tsai AG, Cabrales P, Winslow RM, Intaglietta M (2003) Microvascular oxygen distribution in awake hamster window chamber model during hyperoxia. Am J Physiol Heart Circ Physiol 285:H1537–H1545PubMedGoogle Scholar
  10. 10.
    De Backer D, Creteur J, Dubois MJ, Sakr Y, Koch M, Verdant C, Vincent JL (2006) The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med 34:403–408CrossRefPubMedGoogle Scholar
  11. 11.
    De Backer D, Verdant C, Chierego M, Koch M, Gullo A, Vincent J-L (2006) Effects of Drotecogin alfa activated on microcirculatory alterations in patients with severe sepsis. Crit Care Med 34:1918–1924CrossRefPubMedGoogle Scholar
  12. 12.
    Sakr Y, Chierego M, Piagnerelli M, Verdant C, Dubois MJ, Koch M, Creteur J, Gullo A, Vincent JL, De Backer D (2007) Microvascular response to red blood cell transfusion in patients with severe sepsis. Crit Care Med 35:1639–1644CrossRefPubMedGoogle Scholar
  13. 13.
    Buchele GL, Silva E, Ospina-Tascon G, Vincent J-L, De Backer D (2009) Effects of hydrocortisone on microcirculatory alterations in patients with septic shock. Crit Care Med 37:1341–1347CrossRefPubMedGoogle Scholar
  14. 14.
    Hoffmann JN, Vollmar B, Laschke MW, Inthorn D, Schildberg FW, Menger MD (2002) Hydroxyethyl starch (130 kD), but not crystalloid volume support, improves microcirculation during normotensive endotoxemia. Anesthesiology 97:460–470CrossRefPubMedGoogle Scholar
  15. 15.
    de Carvalho H, Dorigo D, Bouskela E (2001) Effects of Ringer-acetate and Ringer-dextran solutions on the microcirculation after LPS challenge: observations in the hamster cheek pouch. Shock 15:157–162CrossRefPubMedGoogle Scholar
  16. 16.
    Schaper J, Ahmed R, Schafer T, Elster A, Enigk F, Habazettl H, Mousa S, Schafer M, Welte M (2008) Volume therapy with colloid solutions preserves intestinal microvascular perfusion in endotoxaemia. Resuscitation 76:120–128CrossRefPubMedGoogle Scholar
  17. 17.
    Axler O, Tousignant C, Thompson CR, Dalla’va-Santucci J, Drummond A, Phang PT, Russell JA (1997) Small hemodynamic effect of typical rapid volume infusions in critically ill patients. Crit Care Med 25:965–970CrossRefPubMedGoogle Scholar
  18. 18.
    Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, Moerer O, Gruendling M, Oppert M, Grond S, Olthoff D, Jaschinski U, John S, Rossaint R, Welte T, Schaefer M, Kern P, Kuhnt E, Kiehntopf M, Hartog C, Natanson C, Loeffler M, Reinhart K (2008) Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 358:125–139CrossRefPubMedGoogle Scholar
  19. 19.
    Vincent J-L, Weil MH (2006) Fluid challenge revisited. Crit Care Med 34:1337Google Scholar
  20. 20.
    Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 31:1250–1256CrossRefPubMedGoogle Scholar
  21. 21.
    De Backer D, Hollenberg S, Boerma C, Goedhart P, Buchele G, Ospina-Tascon G, Dobbe I, Ince C (2007) How to evaluate the microcirculation: report of a round table conference. Crit Care 11:R101CrossRefPubMedGoogle Scholar
  22. 22.
    Su F, Wang Z, Cai Y, Rogiers P, Vincent JL (2007) Fluid resuscitation in severe sepsis and septic shock: albumin, hydroxyethyl starch, gelatin or ringer’s lactate-does it really make a difference? Shock 27:520–526CrossRefPubMedGoogle Scholar
  23. 23.
    van der Heijden M, Verheij J, van Nieuw Amerongen GP, Groeneveld AB (2009) Crystalloid or colloid fluid loading and pulmonary permeability, edema, and injury in septic and nonseptic critically ill patients with hypovolemia. Crit Care Med 37:1275–1281Google Scholar
  24. 24.
    Dubin A, Edul VS, Pozo MO, Murias G, Canullan CM, Martins EF, Ferrara G, Canales HS, Laporte M, Estenssoro E, Ince C (2008) Persistent villi hypoperfusion explains intramucosal acidosis in sheep endotoxemia. Crit Care Med 36:535–542CrossRefPubMedGoogle Scholar
  25. 25.
    Verdant CL, De Backer D, Bruhn A, Clausi C, Su F, Wang Z, Rodriguez H, Pries AR, Vincent J-L (2009) Evaluation of sublingual and gut mucosal microcirculation in sepsis: a quantitative analysis. Crit Care Med 37:2875–2881CrossRefPubMedGoogle Scholar
  26. 26.
    Silva E, De Backer D, Creteur J, Vincent JL (2004) Effects of fluid challenge on gastric mucosal PCO2 in septic patients. Intensive Care Med 30:423–429CrossRefPubMedGoogle Scholar
  27. 27.
    Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL (2008) Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med 34:17–60CrossRefPubMedGoogle Scholar
  28. 28.
    The National Heart Blood Lung Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354:2564–2575CrossRefGoogle Scholar

Copyright information

© Copyright jointly held by Springer and ESICM 2010

Authors and Affiliations

  • Gustavo Ospina-Tascon
    • 1
  • Ana Paula Neves
    • 1
  • Giovanna Occhipinti
    • 1
  • Katia Donadello
    • 1
  • Gustavo Büchele
    • 1
  • Davide Simion
    • 1
  • Maria-Luisa Chierego
    • 1
  • Tatiana Oliveira Silva
    • 1
  • Adriana Fonseca
    • 1
  • Jean-Louis Vincent
    • 1
  • Daniel De Backer
    • 1
    Email author
  1. 1.Department of Intensive CareErasme University Hospital, Université Libre de BruxellesBrusselsBelgium

Personalised recommendations