Intensive Care Medicine

, Volume 36, Issue 8, pp 1417–1426 | Cite as

Assisted ventilation modes reduce the expression of lung inflammatory and fibrogenic mediators in a model of mild acute lung injury

  • Felipe Saddy
  • Gisele P. Oliveira
  • Cristiane S. N. B. Garcia
  • Liliane M. Nardelli
  • Andreia F. Rzezinski
  • Debora S. Ornellas
  • Marcelo M. Morales
  • Vera L. Capelozzi
  • Paolo Pelosi
  • Patricia R. M. RoccoEmail author



The goal of the study was to compare the effects of different assisted ventilation modes with pressure controlled ventilation (PCV) on lung histology, arterial blood gases, inflammatory and fibrogenic mediators in experimental acute lung injury (ALI).


Paraquat-induced ALI rats were studied. At 24 h, animals were anaesthetised and further randomized as follows (n = 6/group): (1) pressure controlled ventilation mode (PCV) with tidal volume (V T) = 6 ml/kg and inspiratory to expiratory ratio (I:E) = 1:2; (2) three assisted ventilation modes: (a) assist-pressure controlled ventilation (APCV1:2) with I:E = 1:2, (b) APCV1:1 with I:E = 1:1; and (c) biphasic positive airway pressure and pressure support ventilation (BiVent + PSV), and (3) spontaneous breathing without PEEP in air. PCV, APCV1:1, and APCV1:2 were set with P insp = 10 cmH2O and PEEP = 5 cmH2O. BiVent + PSV was set with two levels of CPAP [inspiratory pressure (P High = 10 cmH2O) and positive end-expiratory pressure (P Low = 5 cmH2O)] and inspiratory/expiratory times: T High = 0.3 s and T Low = 0.3 s. PSV was set as follows: 2 cmH2O above P High and 7 cmH2O above P Low. All rats were mechanically ventilated in air and PEEP = 5 cmH2O for 1 h.


Assisted ventilation modes led to better functional improvement and less lung injury compared to PCV. APCV1:1 and BiVent + PSV presented similar oxygenation levels, which were higher than in APCV1:2. Bivent + PSV led to less alveolar epithelium injury and lower expression of tumour necrosis factor-α, interleukin-6, and type III procollagen.


In this experimental ALI model, assisted ventilation modes presented greater beneficial effects on respiratory function and a reduction in lung injury compared to PCV. Among assisted ventilation modes, Bi-Vent + PSV demonstrated better functional results with less lung damage and expression of inflammatory mediators.


Acute lung injury Ventilator-associated lung injury Cytokines Type III procollagen 



We would like to express our gratitude to Mr. Andre Benedito da Silva for animal care, Mrs. Miriam Regina Taborda Simone and Ana Lucia Neves da Silva for their help with microscopy, Ms. Jaqueline Lima do Nascimento for her skillful technical assistance during the experiments, Mrs. Moira Elizabeth Schöttler for assistance in editing the manuscript, and Maquet for borrowing us Servo-I ventilator. Supported by Centres of Excellence Program (PRONEX-FAPERJ), Brazilian Council for Scientific and Technological Development (CNPq), Carlos Chagas Filho, Rio de Janeiro State Research Supporting Foundation (FAPERJ), São Paulo State Research Supporting Foundation (FAPESP).

Supplementary material

134_2010_1808_MOESM1_ESM.doc (96 kb)
Supplementary material 1 (DOC 96 kb)


  1. 1.
    Esteban A, Alía I, Tobin MJ, Gil A, Gordo F, Vallverdú I, Blanch L, Bonet A, Vázquez A, de Pablo R, Torres A, de La Cal MA, Macías S, Spanish Lung Failure Collaborative Group (1999) Effect of spontaneous breathing trial duration on outcome of attempts to discontinue mechanical ventilation. Am J Respir Crit Care Med 159:512–518PubMedGoogle Scholar
  2. 2.
    Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, Zhu J, Sachdeva R, Sonnad S, Kaiser LR, Rubinstein NA, Powers SK, Shrager JB (2008) Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 358:1327–1335CrossRefPubMedGoogle Scholar
  3. 3.
    Sassoon CS, Zhu E, Caiozzo VJ (2004) Assist-control mechanical ventilation attenuates ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med 170:626–632. doi: 10.1164/rccm.200401-042OC CrossRefPubMedGoogle Scholar
  4. 4.
    Kaplan LJ, Bailey H, Formosa V (2001) Airway pressure release ventilation increases cardiac performance in patients with acute lung injury/adult respiratory distress syndrome. Crit Care 5:221–226. doi: 10.1186/cc1027 CrossRefPubMedGoogle Scholar
  5. 5.
    Staudinger T, Kordova H, Röggla M, Tesinsky P, Locker GJ, Laczika K, Knapp S, Frass M (1998) Comparison of oxygen cost of breathing with pressure-support ventilation and biphasic intermittent positive airway pressure ventilation. Crit Care Med 26:1518–1522CrossRefPubMedGoogle Scholar
  6. 6.
    Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J (1999) Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 159:1241–1248PubMedGoogle Scholar
  7. 7.
    Putensen C, Zech S, Wrigge H, Zinserling J, Stüber F, Von Spiegel T, Mutz N (2001) Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 164:43–49PubMedGoogle Scholar
  8. 8.
    Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L (2006) Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med 32:1515–1522. doi: 10.1007/s00134-006-0301-8 CrossRefPubMedGoogle Scholar
  9. 9.
    Kallet RH, Daniel BM, Gropper M, Matthay MA (1998) Acute pulmonary edema following upper airway obstruction: case reports and brief review. Respir Care 43:476–480Google Scholar
  10. 10.
    Rose L, Hawkins M (2008) Airway pressure release ventilation, biphasic positive airway pressure: a systematic review of definitional criteria. Intensive Care Med 34:1766–1773. doi: 10.1007/s00134-008-1216-3 CrossRefPubMedGoogle Scholar
  11. 11.
    Kondili E, Xirouchaki N, Georgopoulos D (2007) Modulation and treatment of patient-ventilator dyssynchrony. Curr Opin Crit Care 13:84–89. doi: 10.1097/MCC.0b013e328011278d CrossRefPubMedGoogle Scholar
  12. 12.
    Fujita Y, Maeda Y, Fujino Y, Uchiyama A, Mashimo T, Nishimura M (2006) Effect of peak inspiratory flow on gas exchange, pulmonary mechanics, and lung histology in rabbits with injured lungs. J Anesth 20:96–101. doi: 10.1007/s00540-005-0374-5 CrossRefPubMedGoogle Scholar
  13. 13.
    D’Angelo E, Pecchiari M, Saetta M, Balestro E, Milic-Emili J (2004) Dependence of lung injury on inflation rate during low-volume ventilation in normal open-chest rabbits. J Appl Physiol 97:260–268. doi: 10.1152/japplphysiol.01175.2003 CrossRefPubMedGoogle Scholar
  14. 14.
    Broccard AF, Hotchkiss JR, Suzuki S, Olson D, Marini JJ (1999) Effects of mean airway pressure and tidal excursion on lung injury induced by mechanical ventilation in an isolated perfused rabbit lung model. Crit Care Med 27:1533–1541CrossRefPubMedGoogle Scholar
  15. 15.
    Marini JJ, Ravenscraft SA (1992) Mean airway pressure: physiologic determinants and clinical importance-Part 1: Physiologic determinants and measurements. Crit Care Med 20:1461–1472CrossRefPubMedGoogle Scholar
  16. 16.
    Marini JJ, Ravenscraft SA (1992) Mean airway pressure: physiologic determinants and clinical importance-part 2: clinical implications. Crit Care Med 20:1604–1616CrossRefPubMedGoogle Scholar
  17. 17.
    Putensen C, Wrigge H (2004) Clinical review: biphasic positive airway pressure and airway pressure release ventilation. Crit Care 8:492–497. doi: 10.1186/cc2919 CrossRefPubMedGoogle Scholar
  18. 18.
    Rocco PR, Negri EM, Kurtz PM, Vasconcellos FP, Silva GH, Capelozzi VL, Romero PV, Zin WA (2001) Lung tissue mechanics and extracellular matrix remodeling in acute lung injury. Am J Respir Crit Care Med 164:1067–1071PubMedGoogle Scholar
  19. 19.
    Weibel ER (1990) Morphometry: stereological theory and practical methods. In: Gil J (ed) Models of lung disease-microscopy and structural methods. Marcel Dekker, New York, pp 199–247Google Scholar
  20. 20.
    Riva DR, Oliveira MBZ, Rzezinski AF, Rangel G, Capelozzi VL, Zin WA, Morales MM, Pelosi P, Rocco PRM (2008) Recruitment maneuver in pulmonary and extrapulmonary experimental acute lung injury. Crit Care Med 36:1900–1908. doi: 10.1097/CCM.0b013e3181760e5d CrossRefPubMedGoogle Scholar
  21. 21.
    Pássaro CP, Silva PL, Rzezinski AF, Abrantes S, Santiago VR, Nardelli L, Santos RS, Barbosa CM, Morales MM, Zin WA, Amato MB, Capelozzi VL, Pelosi P, Rocco PR (2009) Pulmonary lesion induced by low and high positive end-expiratory pressure levels during protective ventilation in experimental acute lung injury. Crit Care Med 37:1011–1017. doi: 10.1097/CCM.0b013e3181962d85 CrossRefPubMedGoogle Scholar
  22. 22.
    Steimback PW, Oliveira GP, Rzezinski AF, Silva PL, Garcia CS, Rangel G, Morales MM, Lapa E, Silva JR, Capelozzi VL, Pelosi P, Rocco PR (2009) Effects of frequency and inspiratory plateau pressure during recruitment manoeuvres on lung and distal organs in acute lung injury. Intensive Care Med 35:1120–1128. doi: 10.1007/s00134-009-1439-y CrossRefPubMedGoogle Scholar
  23. 23.
    Leite-Junior JH, Garcia CS, Souza-Fernandes AB, Silva PL, Ornellas DS, Larangeira AP, Castro-Faria-Neto HC, Morales MM, Negri EM, Capelozzi VL, Zin WA, Pelosi P, Bozza PT, Rocco PR (2008) Methylprednisolone improves lung mechanics and reduces the inflammatory response in pulmonary but not in extrapulmonary mild acute lung injury in mice. Crit Care Med 36:2621–2628. doi: 10.1097/CCM.0b013e3181847b43 CrossRefPubMedGoogle Scholar
  24. 24.
    Gattinoni L, Caironi P, Cressoni M, Chiumello D, Ranieri VM, Quintel M, Russo S, Patroniti N, Cornejo R, Bugedo G (2006) Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 354:1775–1786CrossRefPubMedGoogle Scholar
  25. 25.
    [No authors listed] (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 342:1301–1308Google Scholar
  26. 26.
    Farias LL, Faffe DS, Xisto DG, Santana MC, Lassance R, Prota LF, Amato MB, Morales MM, Zin WA, Rocco PR (2005) Positive end-expiratory pressure prevents lung mechanical stress caused by recruitment/derecruitment. J Appl Physiol 98:53–61. doi: 10.1152/japplphysiol.00118.2004 CrossRefPubMedGoogle Scholar
  27. 27.
    Kulkarni AC, Kuppusamy P, Parinandi N (2007) Oxygen, the lead actor in the pathophysiologic drama: enactment of the trinity of normoxia, hypoxia, and hyperoxia in disease and therapy. Antioxid Redox Signal 9:1717–1730CrossRefPubMedGoogle Scholar
  28. 28.
    dos Santos CC, Slutsky AS (2006) The contribution of biophysical lung injury to the development of biotrauma. Annu Rev Physiol 68:585–618. doi: 10.1146/annurev.physiol.68.072304.113443 CrossRefPubMedGoogle Scholar
  29. 29.
    Henzler D, Pelosi P, Bensberg R, Dembinski R, Quintel M, Pielen V, Rossaint R, Kuhlen R (2006) Effects of partial ventilatory support modalities on respiratory function in severe hypoxemic lung injury. Crit Care Med 34:1738–1745. doi: 10.1097/01.CCM.0000218809.49883.54 CrossRefPubMedGoogle Scholar
  30. 30.
    Powers SK, DeCramer M, Gayan-Ramirez G, Levine S (2008) Pressure support ventilation attenuates ventilator-induced protein modifications in the diaphragm. Crit Care 12:191. doi: 10.1186/cc7095 CrossRefPubMedGoogle Scholar
  31. 31.
    Futier E, Constantin JM, Combaret L, Mosoni L, Roszyk L, Sapin V, Attaix D, Jung B, Jaber S, Bazin JE (2008) Pressure support ventilation attenuates ventilator-induced protein modifications in the diaphragm. Crit Care 12:R116. doi: 10.1186/cc3908 CrossRefPubMedGoogle Scholar
  32. 32.
    Shanely RA, Van Gammeren D, Deruisseau KC, Zergeroglu AM, McKenzie MJ, Yarasheski KE, Powers SK (2004) Mechanical ventilation depresses protein synthesis in the rat diaphragm. Am J Respir Crit Care Med 170:994–999. doi: 10.1164/rccm.200304-575OC CrossRefPubMedGoogle Scholar
  33. 33.
    Pelosi P, Goldner M, McKibben A, Adams A, Eccher G, Caironi P, Losappio S, Gattinoni L, Marini JJ (2001) Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med 164:122–130PubMedGoogle Scholar
  34. 34.
    Wrigge H, Zinserling J, Neumann P, Muders T, Magnusson A, Putensen C, Hedenstierna G (2005) Spontaneous breathing with airway pressure release ventilation favors ventilation in dependent lung regions and counters cyclic alveolar collapse in oleic-acid-induced lung injury: a randomized controlled computed tomography trial. Crit Care 9:R780–R789. doi: 10.1186/cc3908 CrossRefPubMedGoogle Scholar
  35. 35.
    Wrigge H, Zinserling J, Neumann P, Defosse J, Magnusson A, Putensen C, Hedenstierna G (2003) Spontaneous breathing improves lung aeration in oleic acid-induced lung injury. Anesthesiology 99:376–384CrossRefPubMedGoogle Scholar
  36. 36.
    Dembinski R, Max M, Bensberg R, Rossaint R, Kuhlen R (2002) Pressure support compared with controlled mechanical ventilation in experimental lung injury. Anesth Analg 94:1570–1576CrossRefPubMedGoogle Scholar
  37. 37.
    Alberti A, Gallo F, Fongaro A, Valenti S, Rossi A (1995) P0.1 is a useful parameter in setting the level of pressure support ventilation. Intensive Care Med 21:547–553CrossRefPubMedGoogle Scholar
  38. 38.
    Fanelli V, Mascia L, Puntorieri V, Assenzio B, Elia V, Fornaro G, Martin EL, Bosco M, Delsedime L, Fiore T, Grasso S, Ranieri VM (2009) Pulmonary atelectasis during low stretch ventilation: “open lung” versus “lung rest” strategy. Crit Care Med 37:1046–1053. doi: 10.1097/CCM.0b013e3181968e7e CrossRefPubMedGoogle Scholar
  39. 39.
    Garcia CS, Abreu SC, Soares RM, Prota LF, Figueira RC, Morales MM, Capelozzi VL, Zin WA, Rocco PR (2008) Pulmonary morphofunctional effects of mechanical ventilation with high inspiratory air flow. Crit Care Med 36:232–239. doi: 10.1097/01.CCM.0000295309.69123.AE PubMedGoogle Scholar
  40. 40.
    D’Angelo E (1984) Factors affecting the distribution of transpulmonary pressure in animals and in man. Bull Eur Physiopathol Respir 20(5):415–422PubMedGoogle Scholar
  41. 41.
    Spieth PM, Carvalho AR, Pelosi P, Hoehn C, Meissner C, Kasper M, Hübler M, von Neindorff M, Dassow C, Barrenschee M, Uhlig S, Koch T, de Abreu MG (2009) Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury. Am J Respir Crit Care Med 179:684–693. doi: 10.1164/rccm.200806-975OC CrossRefPubMedGoogle Scholar
  42. 42.
    Gama de Abreu M, Spieth PM, Pelosi P, Carvalho AR, Walter C, Schreiber-Ferstl A, Aikele P, Neykova B, Hübler M, Koch T (2008) Noisy pressure support ventilation: a pilot study on a new assisted ventilation mode in experimental lung injury. Crit Care Med 36:818–827. doi: 10.1097/01.CCM.0000299736.55039.3A CrossRefPubMedGoogle Scholar
  43. 43.
    Moriondo A, Mukenge S, Negrini D (2005) Transmural pressure in rat initial subpleural lymphatics during spontaneous or mechanical ventilation. Am J Physiol Heart Circ Physiol 289:H263–H269. doi: 10.1152/ajpheart.00060.2005 CrossRefPubMedGoogle Scholar
  44. 44.
    Pelosi P, Chiumello D, Calvi E, Taccone P, Bottino N, Panigada M, Cadringher P, Gattinoni L (2001) Effects of different continuous positive airway pressure devices and periodic hyperinflations on respiratory function. Crit Care Med 29:1683–1689CrossRefPubMedGoogle Scholar

Copyright information

© Copyright jointly held by Springer and ESICM 2010

Authors and Affiliations

  • Felipe Saddy
    • 1
    • 2
    • 3
  • Gisele P. Oliveira
    • 1
  • Cristiane S. N. B. Garcia
    • 1
  • Liliane M. Nardelli
    • 1
  • Andreia F. Rzezinski
    • 1
  • Debora S. Ornellas
    • 1
    • 4
  • Marcelo M. Morales
    • 4
  • Vera L. Capelozzi
    • 5
  • Paolo Pelosi
    • 6
  • Patricia R. M. Rocco
    • 1
    Email author
  1. 1.Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics-C.C.S.Federal University of Rio de JaneiroRio de JaneiroBrazil
  2. 2.Ventilatory Care Unit Copa D`Or HospitalRio de JaneiroBrazil
  3. 3.Intensive Care Unit Pro Cardiaco HospitalRio de JaneiroBrazil
  4. 4.Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics-C.C.S.Federal University of Rio de JaneiroRio de JaneiroBrazil
  5. 5.Department of PathologyUniversity of São PauloSão PauloBrazil
  6. 6.Department of Ambient, Health and SafetyUniversity of InsubriaVareseItaly

Personalised recommendations