Advertisement

Intensive Care Medicine

, Volume 36, Issue 6, pp 940–948 | Cite as

Central venous pressure measurements improve the accuracy of leg raising-induced change in pulse pressure to predict fluid responsiveness

  • Karim Lakhal
  • Stephan Ehrmann
  • Isabelle Runge
  • Dalila Benzekri-Lefèvre
  • Annick Legras
  • Pierre François Dequin
  • Emmanuelle Mercier
  • Michel Wolff
  • Bernard Régnier
  • Thierry Boulain
Original

Abstract

Purpose

Passive leg raising (PLR) is a maneuver performed to test the cardiac Frank-Starling mechanism. We assessed the influence of PLR-induced changes in preload on the performance of PLR-induced change in pulse pressure (ΔPLRPP) and cardiac output (ΔPLRCO) for fluid responsiveness prediction.

Methods

Sedated, nonarrhythmic patients with persistent shock were included in this prospective multicenter study. Cardiac output and pulse pressure were measured at baseline (patient supine), during PLR (lower limbs lifted to 45°) and after 500-ml volume expansion. Patients were classified as responders or not.

Results

In the whole population (n = 102), the area under the receiver-operating characteristic curve (AUC) was 0.76 for ΔPLRPP and was higher for ΔPLRCO (0.89)(p < 0.05), but likelihood ratios were close to 1. In patients with a PLR-induced increase in central venous pressure (CVP) of at least 2 mmHg (n = 49), ΔPLRPP and ΔPLRCO disclosed higher AUCs than in the rest of the population (0.91 vs. 0.66 and 0.98 vs. 0.83; p < 0.05); positive/negative likelihood ratios were 9.3/0.14 (8% cutoff level) and 30/0.07 (7% cutoff level), respectively.

Conclusions

A PLR-induced change in CVP ≥2 mmHg was required to allow clinical usefulness of PLR-derived indices. In this situation, ΔPLRPP performed well for predicting fluid responsiveness in deeply sedated patients.

Keywords

Monitoring Physiologic [MesH] Hypovolemia [MesH] Passive leg raising Preload Central venous pressure 

Notes

Acknowledgments

Regional grant: Projet hospitalier de recherche clinique no. R10-5, Direction Régionale de la Recherche Clinique Région Centre, Tours, France.

Supplementary material

134_2010_1755_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 20.1 kb)

References

  1. 1.
    De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL (2005) Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med 31:517–523CrossRefPubMedGoogle Scholar
  2. 2.
    Monnet X, Rienzo M, Osman D, Anguel N, Richard C, Pinsky MR, Teboul JL (2006) Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med 34:1402–1407CrossRefPubMedGoogle Scholar
  3. 3.
    Michard F, Teboul JL (2000) Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care 4:282–289CrossRefPubMedGoogle Scholar
  4. 4.
    Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, Connors AF Jr, Hite RD, Harabin AL (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354:2564–2575CrossRefPubMedGoogle Scholar
  5. 5.
    Osman D, Ridel C, Ray P, Monnet X, Anguel N, Richard C, Teboul JL (2007) Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med 35:64–68CrossRefPubMedGoogle Scholar
  6. 6.
    Antonelli M, Levy M, Andrews PJ, Chastre J, Hudson LD, Manthous C, Meduri GU, Moreno RP, Putensen C, Stewart T, Torres A (2007) Hemodynamic monitoring in shock and implications for management. International consensus conference, Paris, France, 27–28 April 2006. Intensive Care Med 33:575–590CrossRefPubMedGoogle Scholar
  7. 7.
    Boulain T, Achard JM, Teboul JL, Richard C, Perrotin D, Ginies G (2002) Changes in BP induced by passive leg raising predict response to fluid loading in critically ill patients. Chest 121:1245–1252CrossRefPubMedGoogle Scholar
  8. 8.
    Rutlen DL, Wackers FJ, Zaret BL (1981) Radionuclide assessment of peripheral intravascular capacity: a technique to measure intravascular volume changes in the capacitance circulation in man. Circulation 64:146–152PubMedGoogle Scholar
  9. 9.
    Thomas M, Shillingford J (1965) The circulatory response to a standard postural change in ischaemic heart disease. Br Heart J 27:17–27CrossRefPubMedGoogle Scholar
  10. 10.
    Monnet X, Osman D, Ridel C, Lamia B, Richard C, Teboul JL (2009) Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Crit Care Med 37:951–956CrossRefPubMedGoogle Scholar
  11. 11.
    Magder S (2005) The use of central venous pressure in critically ill patients. In: Pinsky MR, Payen D (eds) Functional hemodynamic monitoring. Springer, Berlin, pp 299–311CrossRefGoogle Scholar
  12. 12.
    Magder S (2005) How to use central venous pressure measurements. Curr Opin Crit Care 11:264–270CrossRefPubMedGoogle Scholar
  13. 13.
    Magder S (2006) Central venous pressure: a useful but not so simple measurement. Crit Care Med 34:2224–2227CrossRefPubMedGoogle Scholar
  14. 14.
    Magder S (2006) Central venous pressure monitoring. Curr Opin Crit Care 12:219–227CrossRefPubMedGoogle Scholar
  15. 15.
    Teboul JL, Pinsky MR, Mercat A, Anguel N, Bernardin G, Achard JM, Boulain T, Richard C (2000) Estimating cardiac filling pressure in mechanically ventilated patients with hyperinflation. Crit Care Med 28:3631–3636CrossRefPubMedGoogle Scholar
  16. 16.
    Law 2004-806 (August 11, 2004). Official Journal of the French Republic. Article 89Google Scholar
  17. 17.
    Teboul JL, Besbes M, Andrivet P, Axler O, Douguet D, Zelter M, Lemaire F, Brun-Buisson C (1992) A bedside index assessing the reliability of pulmonary occlusion pressure measurements during mechanical ventilation with positive end-expiratory pressure. J Crit Care 7:22–29CrossRefGoogle Scholar
  18. 18.
    Ostergaard M, Nilsson LB, Nilsson JC, Rasmussen JP, Berthelsen PG (2005) Precision of bolus thermodilution cardiac output measurements in patients with atrial fibrillation. Acta Anaesthesiol Scand 49:366–372CrossRefPubMedGoogle Scholar
  19. 19.
    Lodder MC, Lems WF, Ader HJ, Marthinsen AE, van Coeverden SC, Lips P, Netelenbos JC, Dijkmans BA, Roos JC (2004) Reproducibility of bone mineral density measurement in daily practice. Ann Rheum Dis 63:285–289CrossRefPubMedGoogle Scholar
  20. 20.
    Akobeng AK (2007) Understanding diagnostic tests 3: receiver operating characteristic curves. Acta Paediatr 96:644–647CrossRefPubMedGoogle Scholar
  21. 21.
    Grimes DA, Schulz KF (2005) Refining clinical diagnosis with likelihood ratios. Lancet 365:1500–1505CrossRefPubMedGoogle Scholar
  22. 22.
    Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148:839–843PubMedGoogle Scholar
  23. 23.
    Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36PubMedGoogle Scholar
  24. 24.
    Lafanechere A, Pene F, Goulenok C, Delahaye A, Mallet V, Choukroun G, Chiche JD, Mira JP, Cariou A (2006) Changes in aortic blood flow induced by passive leg raising predict fluid responsiveness in critically ill patients. Crit Care 10:R132CrossRefPubMedGoogle Scholar
  25. 25.
    Maizel J, Airapetian N, Lorne E, Tribouilloy C, Massy Z, Slama M (2007) Diagnosis of central hypovolemia by using passive leg raising. Intensive Care Med 33:1133–1138CrossRefPubMedGoogle Scholar
  26. 26.
    Thiel SW, Kollef MH, Isakow W (2009) Non-invasive stroke volume measurement and passive leg raising predict volume responsiveness in medical ICU patients: an observational cohort study. Crit Care 13:R111CrossRefPubMedGoogle Scholar
  27. 27.
    London GM, Pannier BM, Laurent S, Lacolley P, Safar ME (1990) Brachial artery diameter changes associated with cardiopulmonary baroreflex activation in humans. Am J Physiol 258:H773–H777PubMedGoogle Scholar
  28. 28.
    Caille V, Jabot J, Belliard G, Charron C, Jardin F, Vieillard-Baron A (2008) Hemodynamic effects of passive leg raising: an echocardiographic study in patients with shock. Intensive Care Med 34:1239–1245CrossRefPubMedGoogle Scholar
  29. 29.
    Jabot J, Teboul JL, Richard C, Monnet X (2009) Passive leg raising for predicting fluid responsiveness: importance of the postural change. Intensive Care Med 35:85–90CrossRefPubMedGoogle Scholar
  30. 30.
    Magder S (1998) More respect for the CVP. Intensive Care Med 24:651–653CrossRefPubMedGoogle Scholar
  31. 31.
    Squara P, Journois D, Estagnasie P, Wysocki M, Brusset A, Dreyfuss D, Teboul JL (1997) Elastic energy as an index of right ventricular filling. Chest 111:351–358CrossRefPubMedGoogle Scholar
  32. 32.
    De Backer D, Taccone FS, Holsten R, Ibrahimi F, Vincent JL (2009) Influence of respiratory rate on stroke volume variation in mechanically ventilated patients. Anesthesiology 110:1092–1097CrossRefPubMedGoogle Scholar
  33. 33.
    Vincent JL, Weil MH (2006) Fluid challenge revisited. Crit Care Med 34:1333–1337CrossRefPubMedGoogle Scholar

Copyright information

© Copyright jointly hold by Springer and ESICM 2010

Authors and Affiliations

  • Karim Lakhal
    • 1
  • Stephan Ehrmann
    • 2
  • Isabelle Runge
    • 3
  • Dalila Benzekri-Lefèvre
    • 3
  • Annick Legras
    • 2
  • Pierre François Dequin
    • 2
  • Emmanuelle Mercier
    • 2
  • Michel Wolff
    • 1
  • Bernard Régnier
    • 1
  • Thierry Boulain
    • 3
  1. 1.Service de Réanimation Médicale et Maladies Infectieuses, Hôpital Bichat-Claude BernardAssistance Publique des Hôpitaux de ParisParisFrance
  2. 2.Service de Réanimation Médicale PolyvalenteCHRU de ToursToursFrance
  3. 3.Service de Réanimation Médicale, Hôpital La SourceCentre Hospitalier RégionalOrléans Cedex 1France

Personalised recommendations