Intensive Care Medicine

, Volume 36, Issue 3, pp 496–503 | Cite as

The influence of the airway driving pressure on pulsed pressure variation as a predictor of fluid responsiveness

  • Laurent Muller
  • Guillaume Louart
  • Philippe-Jean Bousquet
  • Damien Candela
  • Lana Zoric
  • Jean-Emmanuel de La Coussaye
  • Samir Jaber
  • Jean-Yves Lefrant
Original

Abstract

Objective

Assessing pulse pressure variation (PPV) to predict fluid responsiveness in mechanically ventilated patients with tidal volume (VT) and the impact of VT and airway driving pressure (Pplat − PEEP) on the ability of PPV for predicting fluid responsiveness.

Design

Prospective interventional study.

Setting

ICU of a university hospital.

Patients

Fifty-seven mechanically ventilated and sedated patients with acute circulatory failure requiring cardiac output (CO) measurement.

Intervention

Fluid challenge was given in patients with signs of hypoperfusion (oliguria <0.5 ml kg−1 h−1, attempt to decrease vasopressor infusion rate). Fluid responsiveness was defined as an increase in the stroke index (SI) ≥15%. Receiver-operating characteristic (ROC) curves were generated for PPV and central venous pressure (CVP).

Results

The stroke index was increased ≥15% in 41 patients (71%). At baseline, CVP was lower and PPV was higher in responders. The areas under the ROC curves of PPV and CVP were 0.77 (95% CI 0.65–0.90) and 0.76 (95% CI 0.64–0.89), respectively (P = 0.93). The best cutoff values of PPV and CVP were 7% and 9 mmHg, respectively. In 30 out of 41 responders, PPV was <13%. Using a polytomic logistic regression (Pplat − PEEP) was the sole independent factor associated with a PPV value <13% in responders. In these responders, (Pplat − PEEP) was ≤20 cmH2O.

Conclusion

In patients mechanically ventilated with low VT, PPV values <13% do not rule out fluid responsiveness, especially when (Pplat − PEEP) is ≤20 cmH2O.

Keywords

Critical care Fluid challenge 

References

  1. 1.
    Antonelli M, Levy M, Andrews PJ, Chastre J, Hudson LD, Manthous C, Meduri GU, Moreno RP, Putensen C, Stewart T, Torres A (2007) Hemodynamic monitoring in shock and implications for management. International Consensus Conference, Paris, France, 27–28 April 2006. Intensive Care Med 33:575–590CrossRefPubMedGoogle Scholar
  2. 2.
    Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377CrossRefPubMedGoogle Scholar
  3. 3.
    Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL (2008) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 36:296–327CrossRefPubMedGoogle Scholar
  4. 4.
    Wang P, Zhou M, Rana MW, Ba ZF, Chaudry IH (1992) Differential alterations in microvascular perfusion in various organs during early and late sepsis. Am J Physiol 263:G38–G43PubMedGoogle Scholar
  5. 5.
    Ferguson ND, Meade MO, Hallett DC, Stewart TE (2002) High values of the pulmonary artery wedge pressure in patients with acute lung injury and acute respiratory distress syndrome. Intensive Care Med 28:1073–1077CrossRefPubMedGoogle Scholar
  6. 6.
    Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P (1998) Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89:1313–1321CrossRefPubMedGoogle Scholar
  7. 7.
    Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky MR, Teboul JL (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–138PubMedGoogle Scholar
  8. 8.
    Michard F, Teboul JL (2002) Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 121:2000–2008CrossRefPubMedGoogle Scholar
  9. 9.
    Coriat P, Vrillon M, Perel A, Baron JF, Le Bret F, Saada M, Viars P (1994) A comparison of systolic blood pressure variations and echocardiographic estimates of end-diastolic left ventricular size in patients after aortic surgery. Anesth Analg 78:46–53CrossRefPubMedGoogle Scholar
  10. 10.
    Kramer A, Zygun D, Hawes H, Easton P, Ferland A (2004) Pulse pressure variation predicts fluid responsiveness following coronary artery bypass surgery. Chest 126:1563–1568CrossRefPubMedGoogle Scholar
  11. 11.
    Vieillard-Baron A, Chergui K, Rabiller A, Peyrouset O, Page B, Beauchet A, Jardin F (2004) Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med 30:1734–1739PubMedGoogle Scholar
  12. 12.
    Hofer CK, Muller SM, Furrer L, Klaghofer R, Genoni M, Zollinger A (2005) Stroke volume and pulse pressure variation for prediction of fluid responsiveness in patients undergoing off-pump coronary artery bypass grafting. Chest 128:848–854CrossRefPubMedGoogle Scholar
  13. 13.
    Auler JO Jr, Galas F, Hajjar L, Santos L, Carvalho T, Michard F (2008) Online monitoring of pulse pressure variation to guide fluid therapy after cardiac surgery. Anesth Analg 106:1201–1206 table of contentsCrossRefPubMedGoogle Scholar
  14. 14.
    Cannesson M, Slieker J, Desebbe O, Bauer C, Chiari P, Henaine R, Lehot JJ (2008) The ability of a novel algorithm for automatic estimation of the respiratory variations in arterial pulse pressure to monitor fluid responsiveness in the operating room. Anesth Analg 106:1195–1200 table of contentsCrossRefPubMedGoogle Scholar
  15. 15.
    Monnet X, Rienzo M, Osman D, Anguel N, Richard C, Pinsky MR, Teboul JL (2005) Esophageal Doppler monitoring predicts fluid responsiveness in critically ill ventilated patients. Intensive Care Med 31:1195–1201CrossRefPubMedGoogle Scholar
  16. 16.
    Michard F (2005) Changes in arterial pressure during mechanical ventilation. Anesthesiology 103:419–428 quiz 449-415CrossRefPubMedGoogle Scholar
  17. 17.
    Charron C, Fessenmeyer C, Cosson C, Mazoit JX, Hebert JL, Benhamou D, Edouard AR (2006) The influence of tidal volume on the dynamic variables of fluid responsiveness in critically ill patients. Anesth Analg 102:1511–1517CrossRefPubMedGoogle Scholar
  18. 18.
    De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL (2005) Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med 31:517–523CrossRefPubMedGoogle Scholar
  19. 19.
    (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 342:1301–1308Google Scholar
  20. 20.
    Gajic O, Frutos-Vivar F, Esteban A, Hubmayr RD, Anzueto A (2005) Ventilator settings as a risk factor for acute respiratory distress syndrome in mechanically ventilated patients. Intensive Care Med 31:922–926CrossRefPubMedGoogle Scholar
  21. 21.
    Wolthuis EK, Choi G, Dessing MC, Bresser P, Lutter R, Dzoljic M, van der Poll T, Vroom MB, Hollmann M, Schultz MJ (2008) Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents pulmonary inflammation in patients without preexisting lung injury. Anesthesiology 108:46–54CrossRefPubMedGoogle Scholar
  22. 22.
    Ramsay MA, Savege TM, Simpson BR, Goodwin R (1974) Controlled sedation with alphaxalone–alphadolone. Br Med J 2:656–659CrossRefPubMedGoogle Scholar
  23. 23.
    Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 101:1644–1655CrossRefPubMedGoogle Scholar
  24. 24.
    Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) APACHE II: a severity of disease classification system. Crit Care Med 13:818–829CrossRefPubMedGoogle Scholar
  25. 25.
    Fagon JY, Chastre J, Novara A, Medioni P, Gibert C (1993) Characterization of intensive care unit patients using a model based on the presence or absence of organ dysfunctions and/or infection: the ODIN model. Intensive Care Med 19:137–144CrossRefPubMedGoogle Scholar
  26. 26.
    De Backer D, Taccone FS, Holsten R, Ibrahimi F, Vincent JL (2009) Influence of respiratory rate on stroke volume variation in mechanically ventilated patients. Anesthesiology 110:1092–1097CrossRefPubMedGoogle Scholar
  27. 27.
    Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148:839–843PubMedGoogle Scholar
  28. 28.
    Huang CC, Fu JY, Hu HC, Kao KC, Chen NH, Hsieh MJ, Tsai YH (2008) Prediction of fluid responsiveness in acute respiratory distress syndrome patients ventilated with low tidal volume and high positive end-expiratory pressure. Crit Care Med 36:2810–2816CrossRefPubMedGoogle Scholar
  29. 29.
    Jardin F, Genevray B, Brun-Ney D, Bourdarias JP (1985) Influence of lung and chest wall compliances on transmission of airway pressure to the pleural space in critically ill patients. Chest 88:653–658CrossRefPubMedGoogle Scholar
  30. 30.
    Lefrant JY, De Backer D (2009) Can we use pulse pressure variations to predict fluid responsiveness in patients with ARDS? Intensive Care Med 35(6):966–968CrossRefPubMedGoogle Scholar
  31. 31.
    Reuter DA, Bayerlein J, Goepfert MS, Weis FC, Kilger E, Lamm P, Goetz AE (2003) Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients. Intensive Care Med 29:476–480PubMedGoogle Scholar
  32. 32.
    Kim HK, Pinsky MR (2008) Effect of tidal volume, sampling duration, and cardiac contractility on pulse pressure and stroke volume variation during positive-pressure ventilation. Crit Care Med 36:2858–2862CrossRefPubMedGoogle Scholar
  33. 33.
    Vallee F, Richard JC, Mari A, Gallas T, Arsac E, Verlaan PS, Chousterman B, Samii K, Genestal M, Fourcade O (2009) Pulse pressure variations adjusted by alveolar driving pressure to assess fluid responsiveness. Intensive Care Med 35(6):1004–1110CrossRefPubMedGoogle Scholar
  34. 34.
    de Waal EE, Rex S, Kruitwagen CL, Kalkman CJ, Buhre WF (2009) Dynamic preload indicators fail to predict fluid responsiveness in open-chest conditions. Crit Care Med 37:510–515CrossRefPubMedGoogle Scholar
  35. 35.
    Nouira S, Elatrous S, Dimassi S, Besbes L, Boukef R, Mohamed B, Abroug F (2005) Effects of norepinephrine on static and dynamic preload indicators in experimental hemorrhagic shock. Crit Care Med 33:2339–2343CrossRefPubMedGoogle Scholar
  36. 36.
    Vincent JL, Gerlach H (2004) Fluid resuscitation in severe sepsis and septic shock: an evidence-based review. Crit Care Med 32:S451–S454CrossRefPubMedGoogle Scholar

Copyright information

© Copyright jointly hold by Springer and ESICM 2009

Authors and Affiliations

  • Laurent Muller
    • 1
    • 2
    • 3
  • Guillaume Louart
    • 1
    • 2
    • 3
  • Philippe-Jean Bousquet
    • 2
    • 4
  • Damien Candela
    • 1
    • 2
    • 3
  • Lana Zoric
    • 1
    • 2
    • 3
  • Jean-Emmanuel de La Coussaye
    • 1
    • 2
    • 3
  • Samir Jaber
    • 5
  • Jean-Yves Lefrant
    • 1
    • 2
    • 3
  1. 1.Division Anesthésie Réanimation Douleur UrgencesGroupe Hospitalo-Universitaire Caremeau, CHU NîmesNîmes Cedex 9France
  2. 2.Faculté de MédecineUniversité Montpellier 1MontpellierFrance
  3. 3.Equipe d’Accueil 2992, Laboratoire de Physiologie Cardiovasculaire et d’Anesthésie Expérimentale, Faculté de MédecineGroupe Hospitalo-Universitaire CaremeauNîmes Cedex 9France
  4. 4.Département d’Information médicaleCHU NîmesNîmes Cedex 9France
  5. 5.Service d’Anesthésie Réanimation B (SAR B)MontpellierFrance

Personalised recommendations