Intensive Care Medicine

, Volume 36, Issue 1, pp 107–115 | Cite as

A multiparameter panel method for outcome prediction following aneurysmal subarachnoid hemorrhage

  • Natacha TurckEmail author
  • Laszlo Vutskits
  • Paola Sanchez-Pena
  • Xavier Robin
  • Alexandre Hainard
  • Marianne Gex-Fabry
  • Catherine Fouda
  • Hadiji Bassem
  • Markus Mueller
  • Frédérique Lisacek
  • Louis Puybasset
  • Jean-Charles Sanchez



Accurate early anticipation of long-term irreversible brain damage during the acute phase of patients with aneurysmal subarachnoid hemorrhage (aSAH) remains difficult. Using a combination of clinical scores together with brain injury-related biomarkers (H-FABP, NDKA, UFD1 and S100β), this study aimed at developing a multiparameter prognostic panel to facilitate early outcome prediction following aSAH.


Blood samples of 141 aSAH patients from two separated cohorts (sets of 28 and 113 patients) were prospectively enrolled and analyzed with 14 months of delay. Patients were admitted within 48 h following aSAH onset. A venous blood sample was withdrawn within 12 h after admission. H-FABP, NDKA, UFD1, S100β and troponin I levels were determined using classical immunoassays. The World Federation of Neurological Surgeons (WFNS) at admission and the Glasgow Outcome Score (GOS) at 6 months were evaluated.


In the two cohorts, blood concentration of H-FABP, S100β and troponin I at admission significantly predicted unfavorable outcome (GOS 1–2–3). A multivariate analysis identified a six-parameter panel, including WFNS, H-FABP, S100β, troponin I, NDKA and UFD-1; when at least three of these parameters were simultaneously above cutoff values, prediction of unfavorable outcome reached around 70% sensitivity in both cohorts for 100% specificity.


The use of this panel, including four brain injury-related proteins, one cardiac marker and a clinical score, could be a valuable tool to identify aSAH patients at risk of poor outcome.


Aneurysmal subarachnoid hemorrhage H-FABP NDKA S100β Prognosis 



Heart-fatty acid binding protein


Nucleoside diphosphate kinase A


Ubiquitin fusion degradation protein-1


Aneurysmal subarachnoid hemorrhage







The authors thank the chief nurses and nurses of the Pitié-Salpêtrière Hospital for their remarkable work in the collection of samples. The collection of samples was funded by the Direction for Clinical Research of the Assistance Publique-Hôpitaux de Paris. This work was also kindly supported by Proteome Sciences plc.

Conflicts of interest statement

Neither financial interest nor conflicts of interest are related to this publication.

Supplementary material

134_2009_1641_MOESM1_ESM.doc (90 kb)
Online data supplements 1–5 (DOC 90 kb)


  1. 1.
    Mocco J, Ransom ER, Komotar RJ, Schmidt JM, Sciacca RR, Mayer SA, Connolly ES Jr (2006) Preoperative prediction of long-term outcome in poor-grade aneurysmal subarachnoid hemorrhage. Neurosurgery 59:529–538CrossRefPubMedGoogle Scholar
  2. 2.
    Cesarini KG, Hardemark HG, Persson L (1999) Improved survival after aneurysmal subarachnoid hemorrhage: review of case management during a 12-year period. J Neurosurg 90:664–672CrossRefPubMedGoogle Scholar
  3. 3.
    Saveland H, Brandt L (1994) Which are the major determinants for outcome in aneurysmal subarachnoid hemorrhage? A prospective total management study from a strictly unselected series. Acta Neurol Scand 90:245–250PubMedCrossRefGoogle Scholar
  4. 4.
    Nylen K, Csajbok LZ, Ost M, Rashid A, Karlsson JE, Blennow K, Nellgard B, Rosengren L (2006) CSF-neurofilament correlates with outcome after aneurysmal subarachnoid hemorrhage. Neurosci Lett 404:132–136CrossRefPubMedGoogle Scholar
  5. 5.
    Nylen K, Csajbok LZ, Ost M, Rashid A, Blennow K, Nellgard B, Rosengren L (2007) Serum glial fibrillary acidic protein is related to focal brain injury and outcome after aneurysmal subarachnoid hemorrhage. Stroke 38:1489–1494CrossRefPubMedGoogle Scholar
  6. 6.
    Stranjalis G, Korfias S, Psachoulia C, Kouyialis A, Sakas DE, Mendelow AD (2007) The prognostic value of serum S-100B protein in spontaneous subarachnoid haemorrhage. Acta Neurochir (Wien) 149:231–237, discussion 237–238CrossRefGoogle Scholar
  7. 7.
    Oertel M, Schumacher U, McArthur DL, Kastner S, Boker DK (2006) S-100B and NSE: markers of initial impact of subarachnoid haemorrhage and their relation to vasospasm and outcome. J Clin Neurosci 13:834–840CrossRefPubMedGoogle Scholar
  8. 8.
    Lescuyer P, Allard L, Zimmermann-Ivol CG, Burgess JA, Hughes-Frutiger S, Burkhard PR, Sanchez JC, Hochstrasser DF (2004) Identification of post-mortem cerebrospinal fluid proteins as potential biomarkers of ischemia and neurodegeneration. Proteomics 4:2234–2241CrossRefPubMedGoogle Scholar
  9. 9.
    Burgess JA, Lescuyer P, Hainard A, Burkhard PR, Turck N, Michel P, Rossier JS, Reymond F, Hochstrasser DF, Sanchez JC (2006) Identification of brain cell death associated proteins in human post-mortem cerebrospinal fluid. J Proteome Res 5:1674–1681CrossRefPubMedGoogle Scholar
  10. 10.
    Zimmermann-Ivol CG, Burkhard PR, Le Floch-Rohr J, Allard L, Hochstrasser DF, Sanchez JC (2004) Fatty acid binding protein as a serum marker for the early diagnosis of stroke: a pilot study. Mol Cell Proteomics 3:66–72PubMedGoogle Scholar
  11. 11.
    Allard L, Burkhard PR, Lescuyer P, Burgess JA, Walter N, Hochstrasser DF, Sanchez JC (2005) PARK7 and nucleoside diphosphate kinase A as plasma markers for the early diagnosis of stroke. Clin Chem 51:2043–2051CrossRefPubMedGoogle Scholar
  12. 12.
    Allard L, Turck N, Burkhard PR, Walter N, Rosell A, Gex-Fabry M, Hochstrasser DF, Montaner J, Sanchez JC (2007) UFD1 as a blood marker for the early diagnosis of ischemic stroke. Biomarker Insights 2:155–164PubMedGoogle Scholar
  13. 13.
    Turck N, Vutskits L, Sanchez-Pena P, Robin X, Hainard A, Gex-Fabry M, Fouda C, Mueller M, Puybasset L, Sanchez JC (2009) A multiparameter panel method for outcome prediction following aneurysmal subarachoid hemorrhage. In: 5th International conference on biochemical markers for brain damage, 11–14 May, Lund, SwedenGoogle Scholar
  14. 14.
    Turck N, Vutskits L, Sanchez-Pena P, Robin X, Hainard A, Gex-Fabry M, Fouda C, Mueller M, Puybasset L, Sanchez JC (2008) From the proteomics to the clinical study: identification of a multiparameter panel for outcome prediction following aneurysmal subarachnoid hemorrhage. In: 8th Siena meeting from genome to proteome: integration and plateform completion: August 31st–September 4th, Siena, ItalyGoogle Scholar
  15. 15.
    Turck N, Vutskits L, Sanchez-Pena P, Robin X, Hainard A, Gex-Fabry M, Fouda C, Mueller M, Puybasset L, Sanchez JC (2008) A multiparameter panel method for outcome prediction following aneurysmal subarachoid hemorrhage. In: XVII European stroke conference, 13–16 May, Nice, FranceGoogle Scholar
  16. 16.
    Drake C (1988) Report of World Federation of Neurological Surgeons Committee on a universal subarachnoid hemorrhage grading scale. J Neurosurg 68:985–986Google Scholar
  17. 17.
    Fisher CM, Kistler JP, Davis JM (1980) Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery 6:1–9CrossRefPubMedGoogle Scholar
  18. 18.
    Weiss N, Sanchez-Pena P, Roche S, Beaudeux JL, Colonne C, Coriat P, Puybasset L (2006) Prognosis value of plasma S100B protein levels after subarachnoid aneurysmal hemorrhage. Anesthesiology 104:658–666CrossRefPubMedGoogle Scholar
  19. 19.
    Pereira AR, Sanchez-Pena P, Biondi A, Sourour N, Boch AL, Colonne C, Lejean L, Abdennour L, Puybasset L (2007) Predictors of 1-year outcome after coiling for poor-grade subarachnoid aneurysmal hemorrhage. Neurocrit Care 7:18–26CrossRefPubMedGoogle Scholar
  20. 20.
    Sanchez-Pena P, Pereira AR, Sourour NA, Biondi A, Lejean L, Colonne C, Boch AL, Al Hawari M, Abdennour L, Puybasset L (2008) S100B as an additional prognostic marker in subarachnoid aneurysmal hemorrhage. Crit Care Med 36:2267–2273CrossRefPubMedGoogle Scholar
  21. 21.
    Jennett B, Bond M (1975) Assessment of outcome after severe brain damage. Lancet 1:480–484CrossRefPubMedGoogle Scholar
  22. 22.
    Beaudeux JL, Leger P, Dequen L, Gandjbakhch I, Coriat P, Foglietti MJ (2000) Influence of hemolysis on the measurement of S-100beta protein and neuron-specific enolase plasma concentrations during coronary artery bypass grafting. Clin Chem 46:989–990PubMedGoogle Scholar
  23. 23.
    McClish DK (1989) Analyzing a portion of the ROC curve. Med Decis Making 9:190–195CrossRefPubMedGoogle Scholar
  24. 24.
    Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874CrossRefGoogle Scholar
  25. 25.
    Carpenter J, Bithell J (2000) Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians. Stat Med 19:1141–1164CrossRefPubMedGoogle Scholar
  26. 26.
    Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148:839–843PubMedGoogle Scholar
  27. 27.
    Reynolds MA, Kirchick HJ, Dahlen JR, Anderberg JM, McPherson PH, Nakamura KK, Laskowitz DT, Valkirs GE, Buechler KF (2003) Early biomarkers of stroke. Clin Chem 49:1733–1739CrossRefPubMedGoogle Scholar
  28. 28.
    Hainard A, Tiberti N, Robin X, Lejon V, Ngoyi DM, Matovu E, Enyaru JC, Fouda C, Ndung’u JM, Lisacek F, Muller M, Turck N, Sanchez JC (2009) A Combined CXCL10, CXCL8 and H-FABP panel for the staging of human African Trypanosomiasis patients. PLoS Negl Trop Dis 3:e459CrossRefPubMedGoogle Scholar
  29. 29.
    Lagares A, Gomez PA, Lobato RD, Alen JF, Alday R, Campollo J (2001) Prognostic factors on hospital admission after spontaneous subarachnoid haemorrhage. Acta Neurochir (Wien) 143:665–672CrossRefGoogle Scholar
  30. 30.
    Yoshikai S, Nagata S, Ohara S, Yuhi F, Sakata S, Matsuno H (1996) A retrospective analysis of the outcomes of patients with aneurysmal subarachnoid hemorrhages: a focus on the prognostic factors. No Shinkei Geka 24:733–738PubMedGoogle Scholar
  31. 31.
    Gerber CJ, Lang DA, Neil-Dwyer G, Smith PW (1993) A simple scoring system for accurate prediction of outcome within four days of a subarachnoid haemorrhage. Acta Neurochir (Wien) 122:11–22CrossRefGoogle Scholar
  32. 32.
    Hirai S, Ono J, Yamaura A (1996) Clinical grading and outcome after early surgery in aneurysmal subarachnoid hemorrhage. Neurosurgery 39:441–446 discussion 446–447CrossRefPubMedGoogle Scholar
  33. 33.
    Brouwers PJ, Dippel DW, Vermeulen M, Lindsay KW, Hasan D, van Gijn J (1993) Amount of blood on computed tomography as an independent predictor after aneurysm rupture. Stroke 24:809–814PubMedGoogle Scholar
  34. 34.
    Deruty R, Pelissou-Guyotat I, Mottolese C, Amat D, Bognar L (1995) Level of consciousness and age as prognostic factors in aneurysmal SAH. Acta Neurochir (Wien) 132:1–8CrossRefGoogle Scholar
  35. 35.
    Lagares A, Gomez PA, Alen JF, Lobato RD, Rivas JJ, Alday R, Campollo J, de la Camara AG (2005) A comparison of different grading scales for predicting outcome after subarachnoid haemorrhage. Acta Neurochir (Wien) 147:5–16 discussion 16CrossRefGoogle Scholar
  36. 36.
    Laidlaw JD, Siu KH (2003) Poor-grade aneurysmal subarachnoid hemorrhage: outcome after treatment with urgent surgery. Neurosurgery 53:1275–1280 discussion 1280–1282CrossRefPubMedGoogle Scholar
  37. 37.
    Suzuki M, Hori S, Noma S, Kobayashi K (2005) Prognostic value of a qualitative test for heart-type fatty acid-binding protein in patients with acute coronary syndrome. Int Heart J 46:601–606CrossRefPubMedGoogle Scholar
  38. 38.
    Tanaka T, Sohmiya K, Kitaura Y, Takeshita H, Morita H, Ohkaru Y, Asayama K, Kimura H (2006) Clinical evaluation of point-of-care-testing of heart-type fatty acid-binding protein (H-FABP) for the diagnosis of acute myocardial infarction. J Immunoassay Immunochem 27:225–238CrossRefPubMedGoogle Scholar
  39. 39.
    Wunderlich MT, Hanhoff T, Goertler M, Spener F, Glatz JF, Wallesch CW, Pelsers MM (2005) Release of brain-type and heart-type fatty acid-binding proteins in serum after acute ischaemic stroke. J Neurol 252:718–724CrossRefPubMedGoogle Scholar
  40. 40.
    Dabernat S, Larou M, Masse K, Hokfelt T, Mayer G, Daniel JY, Landry M (1999) Cloning of a second nm23–M1 cDNA: expression in the central nervous system of adult mouse and comparison with nm23–M2 mRNA distribution. Brain Res Mol Brain Res 63:351–365CrossRefPubMedGoogle Scholar
  41. 41.
    Vos PE, van Gils M, Beems T, Zimmerman C, Verbeek MM (2006) Increased GFAP and S100beta but not NSE serum levels after subarachnoid haemorrhage are associated with clinical severity. Eur J Neurol 13:632–638CrossRefPubMedGoogle Scholar
  42. 42.
    Yarlagadda S, Rajendran P, Miss JC, Banki NM, Kopelnik A, Wu AH, Ko N, Gelb AW, Lawton MT, Smith WS, Young WL, Zaroff JG (2006) Cardiovascular predictors of in-patient mortality after subarachnoid hemorrhage. Neurocrit Care 5:102–107CrossRefPubMedGoogle Scholar
  43. 43.
    Schuiling WJ, Dennesen PJ, Tans JT, Kingma LM, Algra A, Rinkel GJ (2005) Troponin I in predicting cardiac or pulmonary complications and outcome in subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 76:1565–1569CrossRefPubMedGoogle Scholar
  44. 44.
    Ramappa P, Thatai D, Coplin W, Gellman S, Carhuapoma JR, Quah R, Atkinson B, Marsh JD (2008) Cardiac troponin-I: a predictor of prognosis in subarachnoid hemorrhage. Neurocrit Care 8:398–403CrossRefPubMedGoogle Scholar
  45. 45.
    Germanson TP, Lanzino G, Kongable GL, Torner JC, Kassell NF (1998) Risk classification after aneurysmal subarachnoid hemorrhage. Surg Neurol 49:155–163CrossRefPubMedGoogle Scholar

Copyright information

© Copyright jointly hold by Springer and ESICM 2009

Authors and Affiliations

  • Natacha Turck
    • 1
    Email author
  • Laszlo Vutskits
    • 2
  • Paola Sanchez-Pena
    • 3
  • Xavier Robin
    • 1
    • 4
  • Alexandre Hainard
    • 1
  • Marianne Gex-Fabry
    • 5
  • Catherine Fouda
    • 1
  • Hadiji Bassem
    • 3
  • Markus Mueller
    • 4
  • Frédérique Lisacek
    • 4
  • Louis Puybasset
    • 3
  • Jean-Charles Sanchez
    • 1
  1. 1.Biomedical Proteomics Research Group, Department of Structural Biology and BioinformaticsMedical University CentreGeneva 4Switzerland
  2. 2.Department of Anesthesiology, Pharmacology and Intensive CareUniversity Hospital of GenevaGeneva 14Switzerland
  3. 3.Department of Anesthesiology and Critical CarePitié-Salpêtrière Teaching HospitalParisFrance
  4. 4.Swiss Institute of BioinformaticsMedical University CentreGeneva 4Switzerland
  5. 5.Department of PsychiatryUniversity Hospital of GenevaChêne-BourgSwitzerland

Personalised recommendations