Intensive Care Medicine

, Volume 35, Issue 10, pp 1792–1800 | Cite as

Nebulized ceftazidime in experimental pneumonia caused by partially resistant Pseudomonas aeruginosa

  • Fabio Ferrari
  • Qin Lu
  • Cassio Girardi
  • Olivier Petitjean
  • Charles-Hugo Marquette
  • Frederic Wallet
  • Jean-Jacques RoubyEmail author
  • the Experimental ICU Study Group



Ventilator-associated pneumonia caused by Pseudomonas aeruginosa with impaired sensitivity to ceftazidime is frequent in critically ill patients. The aim of the study was to compare lung tissue deposition and antibacterial efficiency between nebulized and intravenous administrations of ceftazidime in ventilated piglets with pneumonia caused by Pseudomonas aeruginosa with impaired sensitivity to ceftazidime.


Ceftazidime was administered 24 h following the intra-bronchial inoculation of Pseudomonas aeruginosa (minimum inhibitory concentration = 16 μg ml−1), either by nebulization (25 mg kg−1 every 3 h, n = 6) or by continuous intravenous infusion (90 mg kg−1 over 24 h after an initial rapid infusion of 30 mg kg−1, n = 6). Four non-treated inoculated animals served as controls. All piglets were killed 48 h (intravenous and control groups) or 51 h (aerosol group) after inoculation. Lung tissue concentrations and lung bacterial burden were assessed on multiple post-mortem sub-pleural lung specimens [(lower limit of quantitation = 102 colony forming unit (cfu g−1)].


Ceftazidime trough lung tissue concentrations following nebulization were greater than steady-state lung tissue concentrations following continuous intravenous infusion [median and interquartile range, 24.8 (12.6–59.6) μg g−1 vs. 6.1 (4.6–10.8) μg g−1] (p < 0.001). After 24 h of ceftazidime administration, 83% of pulmonary segments had bacterial counts <102 cfu g−1 following nebulization and only 30% following intravenous administration (p < 0.001). In control animals, 10% of lung segments had bacterial counts <102 cfu g−1 48 h following bronchial inoculation.


Nebulized ceftazidime provides more efficient bacterial killing in ventilated piglets with pneumonia caused by Pseudomonas aeruginosa with impaired sensitivity to ceftazidime.


Nebulization Ceftazidime Pneumonia Pseudomonas aeruginosa Mechanical ventilation Treatment 



The authors would like to thank to Arnold Dive and Michel Pottier for the preparation of the animals.


  1. 1.
    Vincent JL, Bihari DJ, Suter PM, Bruining HA, White J, Nicolas-Chanoin MH, Wolff M, Spencer RC, Hemmer M (1995) The prevalence of nosocomial infection in intensive care units in Europe Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. EPIC International Advisory Committee. JAMA 274:639–644PubMedCrossRefGoogle Scholar
  2. 2.
    Bergmans DC, Bonten MJ, Gaillard CA, van Tiel FH, van der Geest S, de Leeuw PW, Stobberingh EE (1997) Indications for antibiotic use in ICU patients: a 1-year prospective surveillance. J Antimicrob Chemother 39:527–535PubMedCrossRefGoogle Scholar
  3. 3.
    Mesaros N, Nordmann P, Plesiat P, Roussel-Delvallez M, Van Eldere J, Glupczynski Y, Van Laethem Y, Jacobs F, Lebecque P, Malfroot A, Tulkens PM, Van Bambeke F (2007) Pseudomonas aeruginosa: resistance and therapeutic options at the turn of the new millennium. Clin Microbiol Infect 13:560–578PubMedCrossRefGoogle Scholar
  4. 4.
    Obritsch MD, Fish DN, MacLaren R, Jung R (2005) Nosocomial infections due to multidrug-resistant Pseudomonas aeruginosa: epidemiology and treatment options. Pharmacotherapy 25:1353–1364PubMedCrossRefGoogle Scholar
  5. 5.
    Cavallo JD, Leblanc F, Fabre R (2000) Surveillance of Pseudomonas aeruginosa sensitivity to antibiotics in France and distribution of beta-lactam resistance mechanisms: 1998 GERPB study. Pathol Biol (Paris) 48:472–477Google Scholar
  6. 6.
    Alou L, Aguilar L, Sevillano D, Gimenez MJ, Echeverria O, Gomez-Lus ML, Prieto J (2005) Is there a pharmacodynamic need for the use of continuous versus intermittent infusion with ceftazidime against Pseudomonas aeruginosa? An in vitro pharmacodynamic model. J Antimicrob Chemother 55:209–213PubMedCrossRefGoogle Scholar
  7. 7.
    Girardi C, Tonnellier M, Goldstein I, Sartorius A, Wallet F, Rouby JJ (2006) Lung deposition of continuous and intermittent intravenous ceftazidime in experimental Pseudomonas aeruginosa bronchopneumonia. Intensive Care Med 32:2042–2048PubMedCrossRefGoogle Scholar
  8. 8.
    Goldstein I, Wallet F, Robert J, Becquemin MH, Marquette CH, Rouby JJ (2002) Lung tissue concentrations of nebulized amikacin during mechanical ventilation in piglets with healthy lungs. Am J Respir Crit Care Med 165:171–175PubMedGoogle Scholar
  9. 9.
    Rouby JJ, Goldstein I, Lu Q (2006) Inhaled antibiotic therapy. In: Tobin MJ (ed) Principles and practice of mechanical ventilation, chap 64, 2nd edn. McGraw-Hill Medical Publishing Division, New York, pp 1311–1332Google Scholar
  10. 10.
    Goldstein I, Wallet F, Nicolas-Robin A, Ferrari F, Marquette CH, Rouby JJ (2002) Lung deposition and efficiency of nebulized amikacin during Escherichia coli pneumonia in ventilated piglets. Am J Respir Crit Care Med 166:1375–1381PubMedCrossRefGoogle Scholar
  11. 11.
    Tonnellier M, Ferrari F, Goldstein I, Sartorius A, Marquette CH, Rouby JJ (2005) Intravenous versus nebulized ceftazidime in ventilated piglets with and without experimental bronchopneumonia: comparative effects of helium and nitrogen. Anesthesiology 102:995–1000PubMedCrossRefGoogle Scholar
  12. 12.
    Ferrari F, Liu ZH, Lu Q, Becquemin MH, Louchahi K, Aymard G, Marquette CH, Rouby JJ (2008) Comparison of lung tissue concentrations of nebulized ceftazidime in ventilated piglets: ultrasonic versus vibrating plate nebulizers. Intensive Care Med 34:1718–1723PubMedCrossRefGoogle Scholar
  13. 13.
    Myers CM, Blumer JL (1983) Determination of ceftazidime in biological fluids by using high-pressure liquid chromatography. Antimicrob Agents Chemother 24:343–346PubMedGoogle Scholar
  14. 14.
    Dahlberg E (1983) Estimation of the blood contamination of tissue extracts. Anal Biochem 130:108–113PubMedCrossRefGoogle Scholar
  15. 15.
    Baselski VS, Wunderink RG (1994) Bronchoscopic diagnosis of pneumonia. Clin Microbiol Rev 7:533–558PubMedGoogle Scholar
  16. 16.
    Elman M, Goldstein I, Marquette CH, Wallet F, Lenaour G, Rouby JJ (2002) Influence of lung aeration on pulmonary concentrations of nebulized and intravenous amikacin in ventilated piglets with severe bronchopneumonia. Anesthesiology 97:199–206PubMedCrossRefGoogle Scholar
  17. 17.
    Agodi A, Barchitta M, Cipresso R, Giaquinta L, Romeo MA, Denaro C (2007) Pseudomonas aeruginosa carriage, colonization, and infection in ICU patients. Intensive Care Med 33:1155–1161PubMedCrossRefGoogle Scholar
  18. 18.
    Flamm RK, Weaver MK, Thornsberry C, Jones ME, Karlowsky JA, Sahm DF (2004) Factors associated with relative rates of antibiotic resistance in Pseudomonas aeruginosa isolates tested in clinical laboratories in the United States from 1999 to 2002. Antimicrob Agents Chemother 48:2431–2436PubMedCrossRefGoogle Scholar
  19. 19.
    Boselli E, Breilh D, Rimmele T, Poupelin JC, Saux MC, Chassard D, Allaouchiche B (2004) Plasma and lung concentrations of ceftazidime administered in continuous infusion to critically ill patients with severe nosocomial pneumonia. Intensive Care Med 30:989–991PubMedCrossRefGoogle Scholar
  20. 20.
    Mouton JW, den Hollander JG (1994) Killing of Pseudomonas aeruginosa during continuous and intermittent infusion of ceftazidime in an in vitro pharmacokinetic model. Antimicrob Agents Chemother 38:931–936PubMedGoogle Scholar
  21. 21.
    Nix DE, Goodwin SD, Peloquin CA, Rotella DL, Schentag JJ (1991) Antibiotic tissue penetration and its relevance: impact of tissue penetration on infection response. Antimicrob Agents Chemother 35:1953–1959PubMedGoogle Scholar
  22. 22.
    Ryan DM, Cars O (1983) A problem in the interpretation of beta-lactam antibiotic levels in tissues. J Antimicrob Chemother 12:281–284PubMedCrossRefGoogle Scholar
  23. 23.
    Nix DE, Goodwin SD, Peloquin CA, Rotella DL, Schentag JJ (1991) Antibiotic tissue penetration and its relevance: models of tissue penetration and their meaning. Antimicrob Agents Chemother 35:1947–1952PubMedGoogle Scholar
  24. 24.
    Bayat S, Louchahi K, Verdiere B, Anglade D, Rahoui A, Sorin PM, Tod M, Petitjean O, Fraisse F, Grimbert FA (2004) Comparison of 99mTc-DTPA and urea for measuring cefepime concentrations in epithelial lining fluid. Eur Respir J 24:150–156PubMedCrossRefGoogle Scholar
  25. 25.
    Talor AE, Guyton AC, Bishop VS (1965) Permeability of the alveolar membrane to solutes. Circ Res 16:353–362Google Scholar
  26. 26.
    Gengo FM, Schentag JJ, Jusko WJ (1984) Pharmacokinetics of capacity-limited tissue distribution of methicillin in rabbits. J Pharm Sci 73:867–873PubMedCrossRefGoogle Scholar
  27. 27.
    Baldwin DR, Wise R, Andrews JM, Honeybourne D (1992) Concentrations of cefpodoxime in serum and bronchial mucosal biopsies. J Antimicrob Chemother 30:67–71PubMedCrossRefGoogle Scholar
  28. 28.
    Goldstein I, Bughalo MT, Marquette CH, Lenaour G, Lu Q, Rouby JJ (2001) Mechanical ventilation-induced air-space enlargement during experimental pneumonia in piglets. Am J Respir Crit Care Med 163:958–964PubMedGoogle Scholar
  29. 29.
    Wermert D, Marquette CH, Copin MC, Wallet F, Fraticelli A, Ramon P, Tonnel AB (1998) Influence of pulmonary bacteriology and histology on the yield of diagnostic procedures in ventilator-acquired pneumonia. Am J Respir Crit Care Med 158:139–147PubMedGoogle Scholar
  30. 30.
    Fabregas N, Torres A, El-Ebiary M, Ramirez J, Hernandez C, Gonzalez J, de la Bellacasa J, de Anta J, Rodriquez-Roisin R (1996) Histopathologic and microbiologic aspects of ventilator-associated pneumonia. Anesthesiology 84:757–759CrossRefGoogle Scholar
  31. 31.
    Rouby JJ, Martin De Lassale E, Poete P, Nicolas MH, Bodin L, Jarlier V, Le Charpentier Y, Grosset J, Viars P (1992) Nosocomial bronchopneumonia in the critically ill histologic and bacteriologic aspects. Am Rev Respir Dis 146:1059–1066PubMedGoogle Scholar
  32. 32.
    Hauser AR (2008) Pseudomonas aeruginosa: an uninvited guest refuses to leave. Am J Respir Crit Care Med 178:438–439PubMedCrossRefGoogle Scholar
  33. 33.
    Rello J, Mariscal D, March F, Jubert P, Sanchez F, Valles J, Coll P (1998) Recurrent Pseudomonas aeruginosa pneumonia in ventilated patients: relapse or reinfection? Am J Respir Crit Care Med 157:912–916PubMedGoogle Scholar
  34. 34.
    Visscher S, Schurink CA, Melsen WG, Lucas PJ, Bonten MJ (2008) Effects of systemic antibiotic therapy on bacterial persistence in the respiratory tract of mechanically ventilated patients. Intensive Care Med 34:692–699PubMedCrossRefGoogle Scholar
  35. 35.
    Valles J, Mariscal D, Cortes P, Coll P, Villagra A, Diaz E, Artigas A, Rello J (2004) Patterns of colonization by Pseudomonas aeruginosa in intubated patients: a 3-year prospective study of 1,607 isolates using pulsed-field gel electrophoresis with implications for prevention of ventilator-associated pneumonia. Intensive Care Med 30:1768–1775PubMedCrossRefGoogle Scholar
  36. 36.
    Kobayashi H (2005) Airway biofilms: implications for pathogenesis and therapy of respiratory tract infections. Treat Respir Med 4:241–253PubMedCrossRefGoogle Scholar
  37. 37.
    El Solh AA, Akinnusi ME, Wiener-Kronish JP, Lynch SV, Pineda LA, Szarpa K (2008) Persistent infection with Pseudomonas aeruginosa in ventilator-associated pneumonia. Am J Respir Crit Care Med 178:513–519PubMedCrossRefGoogle Scholar
  38. 38.
    Palmer LB, Smaldone GC, Chen JJ, Baram D, Duan T, Monteforte M, Varela M, Tempone AK, O’Riordan T, Daroowalla F, Richman P (2008) Aerosolized antibiotics and ventilator-associated tracheobronchitis in the intensive care unit. Crit Care Med 36:2008–2013PubMedCrossRefGoogle Scholar
  39. 39.
    Falagas ME, Siempos II, Bliziotis IA, Michalopoulos A (2006) Administration of antibiotics via the respiratory tract for the prevention of ICU-acquired pneumonia: a meta-analysis of comparative trials. Crit Care 10:R123PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Fabio Ferrari
    • 1
    • 2
  • Qin Lu
    • 1
    • 2
  • Cassio Girardi
    • 3
  • Olivier Petitjean
    • 4
  • Charles-Hugo Marquette
    • 5
  • Frederic Wallet
    • 6
  • Jean-Jacques Rouby
    • 1
    • 2
    Email author
  • the Experimental ICU Study Group
  1. 1.Réanimation Polyvalente Pierre Viars, Département d’Anesthésie-RéanimationUPMC Univ Paris 06, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de ParisParisFrance
  2. 2.Polyvalent Intensive Care Unit Pierre Viars, La Pitié-Salpêtrière HospitalUniversity Pierre et Marie CurieParisFrance
  3. 3.Department of AnesthesiologyFederal University of Sao PauloSão PauloBrazil
  4. 4.Department of PharmacologyAvicenne HospitalBobignyFrance
  5. 5.DHURE and INSERM U 416University of MedicineLilleFrance
  6. 6.Department of BacteriologyUniversity of MedicineLilleFrance

Personalised recommendations