Advertisement

Intensive Care Medicine

, 35:1900 | Cite as

Evaluation of an electrical impedance tomography-based global inhomogeneity index for pulmonary ventilation distribution

  • Zhanqi ZhaoEmail author
  • Knut Möller
  • Daniel Steinmann
  • Inéz Frerichs
  • Josef Guttmann
Original

Abstract

Purpose

To evaluate the plausibility, stability, and interindividual comparability of the global inhomogeneity index (GI) based on electrical impedance tomography (EIT).

Methods

The lung area in an EIT image was identified by using the lung area estimation method, which mirrors the lung regions in the functional EIT image and subsequently subtracts the cardiac-related areas. The tidal EIT image, showing the difference in impedances between end-inspiration and end-expiration, was calculated and the variations in its pixel values within the predefined lung area were then used as an indicator of inhomogeneous ventilation (the GI index). Fifty patients were investigated including 40 patients tracheally intubated with double-lumen tubes (test group) and 10 patients under anesthesia without pulmonary disease (control group). Positive end-expiratory pressure (PEEP) of 5 mbar was applied in the test group during both two-lung ventilation (TLV) and subsequent one-lung ventilation (OLV). The patients of the control group were ventilated without PEEP. EIT data were recorded in both groups.

Results

A significantly lower GI value was found in the control group (0.40 ± 0.05, P = 0.025 vs. TLV 0.74 ± 0.47 and P < 0.002 vs. OLV 1.51 ± 1.45). A significant difference was also found in the test group between TLV and OLV (P < 0.002). If GI was calculated only in the ventilated lung area during OLV (0.71 ± 0.32), it did not significantly differ from the test group during TLV.

Conclusions

The GI index quantifies the gas distribution in the lung with a single number and reveals good interpatient comparability.

Keywords

Inhomogeneity index Electrical impedance tomography Pulmonary ventilation distribution Ventilation therapy 

Notes

Acknowledgements

This work was partially supported by the Deutsche Forschungsgemeinschaft (Grant #GU 561/6-1) and by Bundesministerium für Bildung und Forschung (Grant 1781X08 MOTiF-A).

Supplementary material

134_2009_1589_MOESM1_ESM.doc (448 kb)
Supplementary material (DOC 447 kb)

References

  1. 1.
    Gattinoni L, D’Andrea L, Pelosi P, Vitale G, Pesenti A, Fumagalli R (1993) Regional effects and mechanism of positive end-expiratory pressure in early adult respiratory distress syndrome. JAMA 269:2122–2127CrossRefPubMedGoogle Scholar
  2. 2.
    Victorino JA, Borges JB, Okamoto VN, Matos GF, Tucci MR, Caramez MP, Tanaka H, Sipmann FS, Santos DC, Barbas CS, Carvalho CR, Amato MB (2004) Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am J Respir Crit Care Med 169:791–800CrossRefPubMedGoogle Scholar
  3. 3.
    Putensen C, Wrigge H, Zinserling J (2007) Electrical impedance tomography guided ventilation therapy. Curr Opin Crit Care 13:344–350CrossRefPubMedGoogle Scholar
  4. 4.
    Kunst PW, Bohm SH, Vazquez de Anda G, Amato MB, Lachmann B, Postmus PE, de Vries PM (2000) Regional pressure volume curves by electrical impedance tomography in a model of acute lung injury. Crit Care Med 28:178–183CrossRefPubMedGoogle Scholar
  5. 5.
    Hinz J, Moerer O, Neumann P, Dudykevych T, Frerichs I, Hellige G, Quintel M (2006) Regional pulmonary pressure volume curves in mechanically ventilated patients with acute respiratory failure measured by electrical impedance tomography. Acta Anaesthesiol Scand 50:331–339CrossRefPubMedGoogle Scholar
  6. 6.
    Hinz J, Gehoff A, Moerer O, Frerichs I, Hahn G, Hellige G, Quintel M (2007) Regional filling characteristics of the lungs in mechanically ventilated patients with acute lung injury. Eur J Anaesthesiol 24:414–424CrossRefPubMedGoogle Scholar
  7. 7.
    Rouby JJ, Lu Q, Goldstein I (2002) Selecting the right level of positive end-expiratory pressure in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 165:1182–1186PubMedGoogle Scholar
  8. 8.
    Gattinoni L, Caironi P, Valenza F, Carlesso E (2006) The role of CT-scan studies for the diagnosis and therapy of acute respiratory distress syndrome. Clin Chest Med 27:559–570 (abstract vii)CrossRefPubMedGoogle Scholar
  9. 9.
    Schibler A, Henning R (2002) Positive end-expiratory pressure and ventilation inhomogeneity in mechanically ventilated children. Pediatr Crit Care Med 3:124–128CrossRefPubMedGoogle Scholar
  10. 10.
    Schmalisch G, Proquitte H, Roehr CC, Wauer RR (2006) The effect of changing ventilator settings on indices of ventilation inhomogeneity in small ventilated lungs. BMC Pulm Med 6:20CrossRefPubMedGoogle Scholar
  11. 11.
    Nopp P, Rapp E, Pfutzner H, Nakesch H, Ruhsam C (1993) Dielectric properties of lung tissue as a function of air content. Phys Med Biol 38:699–716CrossRefPubMedGoogle Scholar
  12. 12.
    Brown BH, Barber DC, Morice AH, Leathard AD (1994) Cardiac and respiratory related electrical impedance changes in the human thorax. IEEE Trans Biomed Eng 41:729–734CrossRefPubMedGoogle Scholar
  13. 13.
    Frerichs I, Hinz J, Herrmann P, Weisser G, Hahn G, Dudykevych T, Quintel M, Hellige G (2002) Detection of local lung air content by electrical impedance tomography compared with electron beam CT. J Appl Physiol 93:660–666PubMedGoogle Scholar
  14. 14.
    Hinz J, Neumann P, Dudykevych T, Andersson LG, Wrigge H, Burchardi H, Hedenstierna G (2003) Regional ventilation by electrical impedance tomography: a comparison with ventilation scintigraphy in pigs. Chest 124:314–322CrossRefPubMedGoogle Scholar
  15. 15.
    Marquis F, Coulombe N, Costa R, Gagnon H, Guardo R, Skrobik Y (2006) Electrical impedance tomography’s correlation to lung volume is not influenced by anthropometric parameters. J Clin Monit Comput 20:201–207CrossRefPubMedGoogle Scholar
  16. 16.
    Wolf GK, Arnold JH (2006) Electrical impedance tomography: ready for prime time? Intensive Care Med 32:1290–1292CrossRefPubMedGoogle Scholar
  17. 17.
    Zhao Z, Möller K, Steinmann D, Guttmann J (2008) Global and local inhomogeneity indices of lung ventilation based on electrical impedance tomography. In: Vander Sloten J, Verdonck P, Nyssen M, Haueisen J (eds) ECIFMBE 2008, IFMBE Proceedings 22. Springer, Berlin, pp 256–259Google Scholar
  18. 18.
    Steinmann D, Stahl CA, Minner J, Schumann S, Loop T, Kirschbaum A, Priebe HJ, Guttmann J (2008) Electrical impedance tomography to confirm correct placement of double-lumen tube: a feasibility study. Br J Anaesth 101:411–418CrossRefPubMedGoogle Scholar
  19. 19.
    Zhao Z, Möller K, Steinmann D, Guttmann J (2009) Determination of lung area in EIT images. In: Proceedings of the 3rd conference on iCBBE, Beijing, China. IEEE (in press)Google Scholar
  20. 20.
    Hahn G, Sipinkova I, Baisch F, Hellige G (1995) Changes in the thoracic impedance distribution under different ventilatory conditions. Physiol Meas 16:A161–A173CrossRefPubMedGoogle Scholar
  21. 21.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMedGoogle Scholar
  22. 22.
    Putensen C, Wrigge H (2007) Tidal volumes in patients with normal lungs: one for all or the less, the better? Anesthesiol 106:1085–1087CrossRefGoogle Scholar
  23. 23.
    Tusman G, Bohm SH, Suarez-Sipmann F, Turchetto E (2004) Alveolar recruitment improves ventilatory efficiency of the lungs during anesthesia. Can J Anaesth 51:723–727CrossRefPubMedGoogle Scholar
  24. 24.
    Hedenstierna G, Edmark L (2005) The effects of anesthesia and muscle paralysis on the respiratory system. Intensive Care Med 31:1327–1335CrossRefPubMedGoogle Scholar
  25. 25.
    Meier T, Luepschen H, Karsten J, Leibecke T, Grossherr M, Gehring H, Leonhardt S (2008) Assessment of regional lung recruitment and derecruitment during a PEEP trial based on electrical impedance tomography. Intensive Care Med 34:543–550CrossRefPubMedGoogle Scholar
  26. 26.
    Frerichs I, Hahn G, Golisch W, Kurpitz M, Burchardi H, Hellige G (1998) Monitoring perioperative changes in distribution of pulmonary ventilation by functional electrical impedance tomography. Acta Anaesthesiol Scand 42:721–726CrossRefPubMedGoogle Scholar
  27. 27.
    Kunst PW, Vazquez de Anda G, Bohm SH, Faes TJ, Lachmann B, Postmus PE, de Vries PM (2000) Monitoring of recruitment and derecruitment by electrical impedance tomography in a model of acute lung injury. Crit Care Med 28:3891–3895CrossRefPubMedGoogle Scholar
  28. 28.
    Pulletz S, Elke G, Zick G, Schadler D, Scholz J, Weiler N, Frerichs I (2008) Performance of electrical impedance tomography in detecting regional tidal volumes during one-lung ventilation. Acta Anaesthesiol Scand 52:1131–1139PubMedGoogle Scholar
  29. 29.
    Frerichs I, Dargaville PA, van Genderingen H, Morel DR, Rimensberger PC (2006) Lung volume recruitment after surfactant administration modifies spatial distribution of ventilation. Am J Respir Crit Care Med 174:772–779CrossRefPubMedGoogle Scholar
  30. 30.
    Frerichs I, Hahn G, Schroder T, Hellige G (1998) Electrical impedance tomography in monitoring experimental lung injury. Intensive Care Med 24:829–836CrossRefPubMedGoogle Scholar
  31. 31.
    Hahn G, Frerichs I, Kleyer M, Hellige G (1996) Local mechanics of the lung tissue determined by functional EIT. Physiol Meas 17(Suppl 4A):A159–A166CrossRefPubMedGoogle Scholar
  32. 32.
    Pulletz S, van Genderingen HR, Schmitz G, Zick G, Schadler D, Scholz J, Weiler N, Frerichs I (2006) Comparison of different methods to define regions of interest for evaluation of regional lung ventilation by EIT. Physiol Meas 27:115–127CrossRefGoogle Scholar
  33. 33.
    Hahn G, Dittmar J, Just A, Hellige G (2008) Improvements in the image quality of ventilatory tomograms by electrical impedance tomography. Physiol Meas 29:S51–S61CrossRefPubMedGoogle Scholar
  34. 34.
    Costa EL, Chaves CN, Gomes S, Beraldo MA, Volpe MS, Tucci MR, Schettino IA, Bohm SH, Carvalho CR, Tanaka H, Lima RG, Amato MB (2008) Real-time detection of pneumothorax using electrical impedance tomography. Crit Care Med 36:1230–1238CrossRefPubMedGoogle Scholar
  35. 35.
    Hahn G, Just A, Dudykevych T, Frerichs I, Hinz J, Quintel M, Hellige G (2006) Imaging pathologic pulmonary air and fluid accumulation by functional and absolute EIT. Physiol Meas 27:S187–S198CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Zhanqi Zhao
    • 1
    • 2
    • 4
    Email author
  • Knut Möller
    • 2
  • Daniel Steinmann
    • 1
  • Inéz Frerichs
    • 3
  • Josef Guttmann
    • 1
  1. 1.Section for Experimental Anesthesiology, Department of Anesthesiology and Critical Care MedicineUniversity Medical CenterFreiburgGermany
  2. 2.Department of Biomedical EngineeringFurtwangen UniversityVillingen-SchwenningenGermany
  3. 3.Department of Anesthesiology and Intensive Care MedicineUniversity Medical Center of Schleswig-Holstein Campus KielKielGermany
  4. 4.Sektion für Experimentelle AnaesthesiologieAnaesthesiologische Universitätsklinik FreiburgFreiburgGermany

Personalised recommendations