Advertisement

Intensive Care Medicine

, Volume 35, Issue 11, pp 1850–1858 | Cite as

Impact of acute hypercapnia and augmented positive end-expiratory pressure on right ventricle function in severe acute respiratory distress syndrome

  • Armand Mekontso DessapEmail author
  • Cyril Charron
  • Jérôme Devaquet
  • Jérôme Aboab
  • François Jardin
  • Laurent Brochard
  • Antoine Vieillard-Baron
Original

Abstract

Purpose

To evaluate the effects of acute hypercapnia induced by positive end-expiratory pressure (PEEP) variations at constant plateau pressure (P plat) in patients with severe acute respiratory distress syndrome (ARDS) on right ventricular (RV) function.

Methods

Prospective observational study in two academic intensive care units enrolling 11 adults with severe ARDS (PaO2/FiO2 <150 mmHg at PEEP >5 cmH2O). We compared three ventilatory strategies, each used for 1 h, with P plat at 22 (20–25) cmH2O: low PEEP (5.4 cmH2O) or high PEEP (11.0 cmH2O) with compensation of the tidal volume reduction by either a high respiratory rate (high PEEP/high rate) or instrumental dead space decrease (high PEEP/low rate). We assessed RV function (transesophageal echocardiography), alveolar dead space (expired CO2), and alveolar recruitment (pressure–volume curves).

Results

Compared to low PEEP, PaO2/FiO2 ratio and alveolar recruitment were increased with high PEEP. Alveolar dead space remained unchanged. Both high-PEEP strategies induced higher PaCO2 levels [71 (60–94) and 75 (53–84), vs. 52 (43–68) mmHg] and lower pH values [7.17 (7.12–7.23) and 7.20 (7.16–7.25) vs. 7.30 (7.24–7.35)], as well as RV dilatation, LV deformation and a significant decrease in cardiac index. The decrease in stroke index tended to be negatively correlated to the increase in alveolar recruitment with high PEEP.

Conclusions

Acidosis and hypercapnia induced by tidal volume reduction and increase in PEEP at constant P plat were associated with impaired RV function and hemodynamics despite positive effects on oxygenation and alveolar recruitment (ClinicalTrials.gov #NCT00236262).

Keywords

Lung injury Acidosis Right heart Alveolar recruitment Alveolar dead space 

Notes

Acknowledgment

We thank Patrick Maison (Unité de Recherche Clinique, Hôpital Henri Mondor, Créteil, France) for valuable statistical advice in interpreting the data. This study was funded by the nonprofit public organization Assistance Publique-Hôpitaux de Paris.

Conflict of interest statement

No potential conflict of interest to disclose.

References

  1. 1.
    International consensus conferences in intensive care medicine: ventilator-associated lung injury in ARDS (1999) This official conference report was cosponsored by the American Thoracic Society, The European Society of Intensive Care Medicine, and The Societe de Reanimation de Langue Francaise, and was approved by the ATS Board of Directors, July 1999. Am J Respir Crit Care Med 160:2118–2124Google Scholar
  2. 2.
    The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308Google Scholar
  3. 3.
    Richard JC, Brochard L, Vandelet P, Breton L, Maggiore SM, Jonson B, Clabault K, Leroy J, Bonmarchand G (2003) Respective effects of end-expiratory and end-inspiratory pressures on alveolar recruitment in acute lung injury. Crit Care Med 31:89–92CrossRefPubMedGoogle Scholar
  4. 4.
    Mercat A, Richard JC, Vielle B, Jaber S, Osman D, Diehl JL, Lefrant JY, Prat G, Richecoeur J, Nieszkowska A, Gervais C, Baudot J, Bouadma L, Brochard L (2008) Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299:646–655CrossRefPubMedGoogle Scholar
  5. 5.
    Schmitt JM, Vieillard-Baron A, Augarde R, Prin S, Page B, Jardin F (2001) Positive end-expiratory pressure titration in acute respiratory distress syndrome patients: impact on right ventricular outflow impedance evaluated by pulmonary artery Doppler flow velocity measurements. Crit Care Med 29:1154–1158CrossRefPubMedGoogle Scholar
  6. 6.
    Jardin F, Vieillard-Baron A (2003) Right ventricular function and positive pressure ventilation in clinical practice: from hemodynamic subsets to respirator settings. Intensive Care Med 29:1426–1434CrossRefPubMedGoogle Scholar
  7. 7.
    Hickling KG (2000) Lung-protective ventilation in acute respiratory distress syndrome: protection by reduced lung stress or by therapeutic hypercapnia? Am J Respir Crit Care Med 162:2021–2022PubMedGoogle Scholar
  8. 8.
    Kavanagh BP, Laffey JG (2006) Hypercapnia: permissive and therapeutic. Minerva Anestesiol 72:567–576PubMedGoogle Scholar
  9. 9.
    Weber T, Tschernich H, Sitzwohl C, Ullrich R, Germann P, Zimpfer M, Sladen RN, Huemer G (2000) Tromethamine buffer modifies the depressant effect of permissive hypercapnia on myocardial contractility in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 162:1361–1365PubMedGoogle Scholar
  10. 10.
    Rose CE Jr, Van Benthuysen K, Jackson JT, Tucker CE, Kaiser DL, Grover RF, Weil JV (1983) Right ventricular performance during increased afterload impaired by hypercapnic acidosis in conscious dogs. Circ Res 52:76–84PubMedGoogle Scholar
  11. 11.
    Puybasset L, Stewart T, Rouby JJ, Cluzel P, Mourgeon E, Belin MF, Arthaud M, Landault C, Viars P (1994) Inhaled nitric oxide reverses the increase in pulmonary vascular resistance induced by permissive hypercapnia in patients with acute respiratory distress syndrome. Anesthesiology 80:1254–1267CrossRefPubMedGoogle Scholar
  12. 12.
    Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R (1994) The American-European Consensus Conference on ARDS, Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824PubMedGoogle Scholar
  13. 13.
    Le Gall JR, Lemeshow S, Saulnier F (1993) A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 270:2957–2963CrossRefPubMedGoogle Scholar
  14. 14.
    Murray JF, Matthay MA, Luce JM, Flick MR (1988) An expanded definition of the adult respiratory distress syndrome. Am Rev Respir Dis 138:720–723PubMedGoogle Scholar
  15. 15.
    Vieillard-Baron A, Jardin F (2003) The issue of dynamic hyperinflation in acute respiratory distress syndrome patients. Eur Respir J Suppl 42:43s–47sCrossRefPubMedGoogle Scholar
  16. 16.
    Page B, Vieillard-Baron A, Beauchet A, Aegerter P, Prin S, Jardin F (2003) Low stretch ventilation strategy in acute respiratory distress syndrome: eight years of clinical experience in a single center. Crit Care Med 31:765–769CrossRefPubMedGoogle Scholar
  17. 17.
    Hotchkiss JR Jr, Blanch L, Murias G, Adams AB, Olson DA, Wangensteen OD, Leo PH, Marini JJ (2000) Effects of decreased respiratory frequency on ventilator-induced lung injury. Am J Respir Crit Care Med 161:463–468PubMedGoogle Scholar
  18. 18.
    Vieillard-Baron A, Chergui K, Rabiller A, Peyrouset O, Page B, Beauchet A, Jardin F (2004) Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med 30:1734–1739PubMedGoogle Scholar
  19. 19.
    Vieillard-Baron A, Schmitt JM, Augarde R, Fellahi JL, Prin S, Page B, Beauchet A, Jardin F (2001) Acute cor pulmonale in acute respiratory distress syndrome submitted to protective ventilation: incidence, clinical implications, and prognosis. Crit Care Med 29:1551–1555CrossRefPubMedGoogle Scholar
  20. 20.
    Nivatpumin T, Katz S, Scheuer J (1979) Peak left ventricular systolic pressure/end-systolic volume ratio: a sensitive detector of left ventricular disease. Am J Cardiol 43:969–974CrossRefPubMedGoogle Scholar
  21. 21.
    Ryan T, Petrovic O, Dillon JC, Feigenbaum H, Conley MJ, Armstrong WF (1985) An echocardiographic index for separation of right ventricular volume and pressure overload. J Am Coll Cardiol 5:918–927PubMedCrossRefGoogle Scholar
  22. 22.
    Vieillard-Baron A, Prin S, Schmitt JM, Augarde R, Page B, Beauchet A, Jardin F (2002) Pressure–volume curves in acute respiratory distress syndrome: clinical demonstration of the influence of expiratory flow limitation on the initial slope. Am J Respir Crit Care Med 165:1107–1112PubMedGoogle Scholar
  23. 23.
    Jonson B, Richard JC, Straus C, Mancebo J, Lemaire F, Brochard L (1999) Pressure–volume curves and compliance in acute lung injury: evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med 159:1172–1178PubMedGoogle Scholar
  24. 24.
    Maggiore SM, Jonson B, Richard JC, Jaber S, Lemaire F, Brochard L (2001) Alveolar derecruitment at decremental positive end-expiratory pressure levels in acute lung injury: comparison with the lower inflection point, oxygenation, and compliance. Am J Respir Crit Care Med 164:795–801PubMedGoogle Scholar
  25. 25.
    Nunn JF (1969) Respiratory dead space and distribution of the inspired gas. Applied respiratory physiology. Butterworths, London, pp 177–208Google Scholar
  26. 26.
    Beydon L, Uttman L, Rawal R, Jonson B (2002) Effects of positive end-expiratory pressure on dead space and its partitions in acute lung injury. Intensive Care Med 28:1239–1245CrossRefPubMedGoogle Scholar
  27. 27.
    Jardin F, Farcot JC, Boisante L, Curien N, Margairaz A, Bourdarias JP (1981) Influence of positive end-expiratory pressure on left ventricular performance. N Engl J Med 304:387–392PubMedGoogle Scholar
  28. 28.
    Carvalho CR, Barbas CS, Medeiros DM, Magaldi RB, Lorenzi Filho G, Kairalla RA, Deheinzelin D, Munhoz C, Kaufmann M, Ferreira M, Takagaki TY, Amato MB (1997) Temporal hemodynamic effects of permissive hypercapnia associated with ideal PEEP in ARDS. Am J Respir Crit Care Med 156:1458–1466PubMedGoogle Scholar
  29. 29.
    Mancini M, Zavala E, Mancebo J, Fernandez C, Barbera JA, Rossi A, Roca J, Rodriguez-Roisin R (2001) Mechanisms of pulmonary gas exchange improvement during a protective ventilatory strategy in acute respiratory distress syndrome. Am J Respir Crit Care Med 164:1448–1453PubMedGoogle Scholar
  30. 30.
    Noble WH, Kay JC, Fisher JA (1981) The effect of PCO2 on hypoxic pulmonary vasoconstriction. Can Anaesth Soc J 28:422–430CrossRefPubMedGoogle Scholar
  31. 31.
    Yamamoto Y, Nakano H, Ide H, Ogasa T, Takahashi T, Osanai S, Kikuchi K, Iwamoto J (2001) Role of airway nitric oxide on the regulation of pulmonary circulation by carbon dioxide. J Appl Physiol 91:1121–1130PubMedGoogle Scholar
  32. 32.
    Zobel G, Rodl S, Urlesberger B, Dacar D, Schwinger W, Bermoser M (1998) Effects of inhaled nitric oxide during permissive hypercapnia in acute respiratory failure in piglets. Crit Care Med 26:1231–1237CrossRefPubMedGoogle Scholar
  33. 33.
    Kiely DG, Cargill RI, Lipworth BJ (1996) Effects of hypercapnia on hemodynamic, inotropic, lusitropic, and electrophysiologic indices in humans. Chest 109:1215–1221CrossRefPubMedGoogle Scholar
  34. 34.
    Combes JC, Nicolas F, Lenfant F, Cros N, D’Athis P, Freysz M (1996) Hemodynamic changes induced by apnea test in patients with brain death. Ann Fr Anesth Reanim 15:1173–1177PubMedGoogle Scholar
  35. 35.
    Chang AC, Zucker HA, Hickey PR, Wessel DL (1995) Pulmonary vascular resistance in infants after cardiac surgery: role of carbon dioxide and hydrogen ion. Crit Care Med 23:568–574CrossRefPubMedGoogle Scholar
  36. 36.
    Ranieri VM, Mascia L, Fiore T, Bruno F, Brienza A, Giuliani R (1995) Cardiorespiratory effects of positive end-expiratory pressure during progressive tidal volume reduction (permissive hypercapnia) in patients with acute respiratory distress syndrome. Anesthesiology 83:710–720CrossRefPubMedGoogle Scholar
  37. 37.
    Jardin F, Brun-Ney D, Hardy A, Aegerter P, Beauchet A, Bourdarias JP (1991) Combined thermodilution and two-dimensional echocardiographic evaluation of right ventricular function during respiratory support with PEEP. Chest 99:162–168CrossRefPubMedGoogle Scholar
  38. 38.
    Gattinoni L, Caironi P, Cressoni M, Chiumello D, Ranieri VM, Quintel M, Russo S, Patroniti N, Cornejo R, Bugedo G (2006) Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 354:1775–1786CrossRefPubMedGoogle Scholar
  39. 39.
    Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, Schoenfeld D, Thompson BT (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351:327–336CrossRefPubMedGoogle Scholar
  40. 40.
    Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Cooper DJ, Davies AR, Hand LE, Zhou Q, Thabane L, Austin P, Lapinsky S, Baxter A, Russell J, Skrobik Y, Ronco JJ, Stewart TE (2008) Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299:637–645CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Armand Mekontso Dessap
    • 1
    • 2
    • 3
    • 5
    Email author
  • Cyril Charron
    • 4
  • Jérôme Devaquet
    • 1
  • Jérôme Aboab
    • 1
  • François Jardin
    • 4
  • Laurent Brochard
    • 1
    • 2
    • 3
  • Antoine Vieillard-Baron
    • 4
  1. 1.Medical Intensive Care Unit, Assistance Publique-Hôpitaux de ParisHenri Mondor–Albert Chenevier Teaching HospitalCréteilFrance
  2. 2.INSERM Unité 955IMRBCréteilFrance
  3. 3.Paris XII UniversityCréteilFrance
  4. 4.Medical Intensive Care Unit, Assistance Publique-Hôpitaux de ParisAmbroise Paré Teaching HospitalBoulogne-BillancourtFrance
  5. 5.Service de Réanimation MédicaleCHU Henri MondorCréteil CedexFrance

Personalised recommendations