Intensive Care Medicine

, Volume 35, Issue 8, pp 1484–1487

Blood acidification enhances carbon dioxide removal of membrane lung: an experimental study

  • Alberto Zanella
  • Nicolò Patroniti
  • Stefano Isgrò
  • Mariangela Albertini
  • Marco Costanzi
  • Federica Pirrone
  • Vittorio Scaravilli
  • Beatrice Vergnano
  • Antonio Pesenti
Physiological and Technical Notes

Abstract

Purpose

Extracorporeal CO2 removal is an effective procedure to allow a protective ventilatory strategy in ARDS patients, but it is technically challenging due to the high blood flow required. Increasing the CO2 transfer through the membrane lung (ML) may lower the demand of extracorporeal blood flow and consequently allow for a wider clinical application of this technique. Since only the dissolved CO2 (5% of the total CO2 content) is easily removed by the ML, we tested whether acidifying the blood entering the ML to convert bicarbonate ions towards dissolved CO2 could enhance the CO2 transfer though the ML.

Methods

Six pigs were connected to an extracorporeal circuit comprising a ML. The extracorporeal blood flow was 500 ml/min, while the gas flow was 10 l/min. A 15-min continuous infusion of 0.5 N lactic acid was added to the extracorporeal blood flow before the ML at a rate of 1, 2 and 5 mEq/min. Between steps we waited for a reequilibration time of at least 30 min.

Results

Acid infusion at 0, 1, 2 and 5 mEq/min increased pCO2 (56.19 ± 7.92, 68.24 ± 11.73, 84.28 ± 11.17 and 136.66 ± 18.46 mmHg, respectively) and decreased pH (7.39 ± 0.05, 7.30 ± 0.05, 7.20 ± 0.05 and 6.91 ± 0.05, respectively). ML CO2 removal increased 11, 23 and 70% during acid infusion at 1, 2 and 5 mEq/min, respectively.

Conclusions

Blood acidification at the inlet of a ML with infusion of 1, 2 and 5 mEq/min of lactic acid can increase the CO2 removal capacity of the ML up to 70%.

Keywords

Extracorporeal CO2 removal (ECCO2R) Ventilator-induced lung injury (VILI) Lactic acid Acute respiratory distress syndrome (ARDS) Extracorporeal life support (ECLS) 

References

  1. 1.
    Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342:1334–1349PubMedCrossRefGoogle Scholar
  2. 2.
    Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury—lessons from experimental studies. Am J Respir Crit Care Med 157:294–323PubMedGoogle Scholar
  3. 3.
    Terragni PP, Rosboch G, Tealdi A, Corno E, Menaldo E, Davini O, Gandini G, Herrmann P, Mascia L, Quintel M, Slutsky AS, Gattinoni L, Ranieri VM (2007) Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 175:160–166PubMedCrossRefGoogle Scholar
  4. 4.
    (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 342(18):1301–1308Google Scholar
  5. 5.
    Gattinoni L, Pesenti A, Mascheroni D, Marcolin R, Fumagalli R, Rossi F, Iapichino G, Romagnoli G, Uziel L, Agostoni A et al (1986) Low-frequency positive-pressure ventilation with extracorporeal CO2 removal in severe acute respiratory failure. JAMA 256:881–886PubMedCrossRefGoogle Scholar
  6. 6.
    Conrad SA, Zwischenberger JB, Grier LR, Alpard SK, Bidani A (2001) Total extracorporeal arteriovenous carbon dioxide removal in acute respiratory failure: a phase I clinical study. Intensive Care Med 27:1340–1351PubMedCrossRefGoogle Scholar
  7. 7.
    Kolobow T, Gattinoni L, Tomlinson T, White D, Pierce J, Iapichino G (1977) The carbon dioxide membrane lung (CDML): a new concept. Trans Am Soc Artif Intern Organs 23:17–21PubMedGoogle Scholar
  8. 8.
    Snider MT, Chaudhari SN, Richard RB, Whitcomb DR, Russell GB (1987) Augmentation of CO2 transfer in membrane lungs by the infusion of a metabolizable organic acid. ASAIO Trans 33:345–351PubMedGoogle Scholar
  9. 9.
    Livigni S, Maio M, Ferretti E, Longobardo A, Potenza R, Rivalta L, Selvaggi P, Vergano M, Bertolini G (2006) Efficacy and safety of a low-flow veno-venous carbon dioxide removal device: results of an experimental study in adult sheep. Crit Care 10:R151PubMedCrossRefGoogle Scholar
  10. 10.
    Geers C, Gros G (2000) Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiol Rev 80:681–715PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Alberto Zanella
    • 1
  • Nicolò Patroniti
    • 1
  • Stefano Isgrò
    • 1
  • Mariangela Albertini
    • 2
  • Marco Costanzi
    • 2
  • Federica Pirrone
    • 2
  • Vittorio Scaravilli
    • 1
  • Beatrice Vergnano
    • 1
  • Antonio Pesenti
    • 1
    • 3
  1. 1.Department of Experimental MedicineUniversity of Milano-BicoccaMonza, MilanItaly
  2. 2.Dipartimento di Patologia animale, Igiene e Sanità pubblica veterinaria, sez. di Biochimica e FisiologiaUniversità degli studi di MilanMilanItaly
  3. 3.Department of Experimental Medicine (DIMS)University of Milan-BicoccaMonzaItaly

Personalised recommendations