Intensive Care Medicine

, Volume 35, Issue 6, pp 1004–1010 | Cite as

Pulse pressure variations adjusted by alveolar driving pressure to assess fluid responsiveness

  • Fabrice Vallée
  • Jean Christophe M. Richard
  • Arnaud Mari
  • Thomas Gallas
  • Eric Arsac
  • Pascale Sanchez Verlaan
  • Benjamin Chousterman
  • Kamran Samii
  • Michèle Genestal
  • Olivier Fourcade



To evaluate the ability of ∆PP/∆P [pulse pressure variations (∆PP) adjusted by alveolar pressure variations (∆P = Pplat-PEEPtot)] in predicting fluid responsiveness, to compare its accuracy to that of ∆PP used alone and to evaluate the influence of tidal volume (Vt) on these two indices.


Prospective study.


A 22-bed general intensive care unit (ICU).


Eighty-four surgical or medical ventilated patients requiring fluid challenge.


A 6 ml/kg colloid fluid challenge in 30 min.

Measurements and results

Hemodynamic measurements taken before and after fluid challenge. Patients separated into responders and nonresponders according to a 15% increase in their cardiac output. Thirty-nine patients found to be responders and 45 nonresponders. ∆PP/∆P and ∆PP were both higher in responders than in nonresponders. ∆PP/∆P was a better predictor of fluid responsiveness than ∆PP, especially for patients ventilated with Vt ≥ 8 ml/kg [area under the curve (AUC) 0.88 (0.77–0.98) versus 0.75 (0.60–0.89), P < 0.01)]. In this population ∆PP/∆P higher than 0.9 predicted fluid response with positive predictive value of 87% and negative predictive value of 78%. Overall ∆PP and ∆PP/∆P reliability was poor for patients ventilated with Vt < 8 ml/kg [AUC 0.63 (0.45–0.81) and 0.72 (0.55–0.88), respectively].


In this mixed ICU population ∆PP adjusted by ∆P is a simple index which outperforms ∆PP for patients ventilated with Vt ≥ 8 ml/kg. However, correcting ∆PP by ∆P still fails to predict fluid response reliably in patients ventilated with low tidal volume.


Fluid responsiveness Delta PP Positive respiratory pressure ARDS 

Supplementary material

134_2009_1478_MOESM1_ESM.doc (220 kb)
Supplementary material 1 (DOC 220 kb)


  1. 1.
    Bendjelid K, Romand JA (2003) Fluid responsiveness in mechanically ventilated patients: a review of indices used in intensive care. Intensive Care Med 29:352–360PubMedCrossRefGoogle Scholar
  2. 2.
    Michard F, Teboul JL (2002) Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 121:2000–2008PubMedCrossRefGoogle Scholar
  3. 3.
    Preisman S, DiSegni E, Vered Z, Perel A (2002) Left ventricular preload and function during graded haemorrhage and retranfusion in pigs: analysis of arterial pressure waveform and correlation with echocardiography. Br J Anaesth 88:716–718PubMedCrossRefGoogle Scholar
  4. 4.
    Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P (1998) Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89:1313–1321PubMedCrossRefGoogle Scholar
  5. 5.
    Berkenstadt H, Margalit N, Hadani M, Friedman Z, Segal E, Villa Y, Perel A (2001) Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg 92:984–989PubMedCrossRefGoogle Scholar
  6. 6.
    Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky MR, Teboul JL (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–138PubMedGoogle Scholar
  7. 7.
    Michard F (2005) Changes in arterial pressure during mechanical ventilation. Anesthesiology 103:419–428 quiz 449-415PubMedCrossRefGoogle Scholar
  8. 8.
    Jardin F, Genevray B, Brun-Ney D, Bourdarias JP (1985) Influence of lung and chest wall compliances on transmission of airway pressure to the pleural space in critically ill patients. Chest 88:653–658PubMedCrossRefGoogle Scholar
  9. 9.
    De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL (2005) Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med 31:517–523PubMedCrossRefGoogle Scholar
  10. 10.
    Jardin F, Delorme G, Hardy A, Auvert B, Beauchet A, Bourdarias JP (1990) Reevaluation of hemodynamic consequences of positive pressure ventilation: emphasis on cyclic right ventricular afterloading by mechanical lung inflation. Anesthesiology 72:966–970PubMedCrossRefGoogle Scholar
  11. 11.
    Monnet X, Teboul JL (2007) Volume responsiveness. Curr Opin Crit Care 13:549–553PubMedCrossRefGoogle Scholar
  12. 12.
    Feihl F, Broccard AF (2008) Interactions between respiration and systemic hemodynamics. Part I: basic concepts. Intensive Care Med 35:45–54Google Scholar
  13. 13.
    Feihl F, Broccard AF (2008) Interactions between respiration and systemic hemodynamics. Part II: practical implications in critical care. Intensive Care Med 35:198–205Google Scholar
  14. 14.
    Jardin F, Vieillard-Baron A (2003) Right ventricular function and positive pressure ventilation in clinical practice: from hemodynamic subsets to respirator settings. Intensive Care Med 29:1426–1434PubMedCrossRefGoogle Scholar
  15. 15.
    Fessler HE (1997) Heart-lung interactions: applications in the critically ill. Eur Respir J 10:226–237PubMedCrossRefGoogle Scholar
  16. 16.
    Pinsky M (2001) Hemodynamic effects of ventilation and ventilatory maneuvers. In: Scharf SM, Pinsky MR, Magder S (eds) Respiratory-circulatory interactions in health and disease. New York, Marcel Dekker Inc., pp 183–218Google Scholar
  17. 17.
    Pinsky MR (2004) Using ventilation-induced aortic pressure and flow variation to diagnose preload responsiveness. Intensive Care Med 30:1008–1010PubMedCrossRefGoogle Scholar
  18. 18.
    Perel A (2008) Automated assessment of fluid responsiveness in mechanically ventilated patients. Anesth Analg 106:1031–1033PubMedCrossRefGoogle Scholar
  19. 19.
    Romand JA, Shi W, Pinsky MR (1995) Cardiopulmonary effects of positive pressure ventilation during acute lung injury. Chest 108:1041–1048PubMedCrossRefGoogle Scholar
  20. 20.
    Perel A, Minkovich L, Preisman S, Abiad M, Segal E, Coriat P (2005) Assessing fluid-responsiveness by a standardized ventilatory maneuver: the respiratory systolic variation test. Anesth Analg 100:942–945PubMedCrossRefGoogle Scholar
  21. 21.
    Jardin F (2004) Cyclic changes in arterial pressure during mechanical ventilation. Intensive Care Med 30:1047–1050PubMedCrossRefGoogle Scholar
  22. 22.
    Vieillard-Baron A, Chergui K, Augarde R, Prin S, Page B, Beauchet A, Jardin F (2003) Cyclic changes in arterial pulse during respiratory support revisited by Doppler echocardiography. Am J Respir Crit Care Med 168:671–676PubMedCrossRefGoogle Scholar
  23. 23.
    Luecke T, Pelosi P (2005) Clinical review: positive end-expiratory pressure and cardiac output. Crit Care 9:607–621PubMedCrossRefGoogle Scholar
  24. 24.
    West JB, Dollery CT, Naimark A (1964) Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol 19:713–724PubMedGoogle Scholar
  25. 25.
    Permutt S, Howell JB, Proctor DF, Riley RL (1961) Effect of lung inflation on static pressure–volume characteristics of pulmonary vessels. J Appl Physiol 16:64–70PubMedGoogle Scholar
  26. 26.
    Permutt S, Bromberger-Barnea B, Bane HN (1962) Alveolar pressure, pulmonary venous pressure, and the vascular waterfall. Medicina thoracalis 19:239–260PubMedGoogle Scholar
  27. 27.
    Denault AY, Gasior TA, Gorcsan J 3rd, Mandarino WA, Deneault LG, Pinsky MR (1999) Determinants of aortic pressure variation during positive-pressure ventilation in man. Chest 116:176–186PubMedCrossRefGoogle Scholar
  28. 28.
    Huang CC, Fu JY, Hu HC, Kao KC, Chen NH, Hsieh MJ, Tsai YH (2008) Prediction of fluid responsiveness in acute respiratory distress syndrome patients ventilated with low tidal volume and high positive end-expiratory pressure. Crit Care Med 36:2810–2816PubMedCrossRefGoogle Scholar
  29. 29.
    Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, Connors AF, Hite RD Jr, Harabin AL (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354:2564–2575PubMedCrossRefGoogle Scholar
  30. 30.
    Kim HK, Pinsky MR (2008) Effect of tidal volume, sampling duration, and cardiac contractility on pulse pressure and stroke volume variation during positive-pressure ventilation. Crit Care Med 36:2858–2862PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Fabrice Vallée
    • 1
    • 4
  • Jean Christophe M. Richard
    • 2
  • Arnaud Mari
    • 1
  • Thomas Gallas
    • 1
  • Eric Arsac
    • 1
  • Pascale Sanchez Verlaan
    • 1
  • Benjamin Chousterman
    • 3
  • Kamran Samii
    • 1
  • Michèle Genestal
    • 1
  • Olivier Fourcade
    • 1
  1. 1.Pôle Anesthésie et Réanimation, Unité de Réanimation Polyvalente de PurpanGRCB 48, Université Paul SabatierToulouseFrance
  2. 2.Service de Réanimation MédicaleHôpital Charles NicolleRouenFrance
  3. 3.Département d’Anesthésie –Réanimation -SMURHôpital Lariboisière, AP-HP & Université Paris 7 Denis Diderot Equipe d’Accueil EA 322ParisFrance
  4. 4.Réanimation polyvalente adulteHôpital Purpan, Place du Dr BaylacToulouse Cedex 9France

Personalised recommendations