Intensive Care Medicine

, Volume 35, Issue 5, pp 816–825 | Cite as

Epidemiology of Mechanical Ventilation: Analysis of the SAPS 3 Database

  • Philipp G. H. Metnitz
  • Barbara Metnitz
  • Rui P. MorenoEmail author
  • Peter Bauer
  • Lorenzo Del Sorbo
  • Christoph Hoermann
  • Susana Afonso de Carvalho
  • V. Marco Ranieri
  • on behalf of the SAPS 3 Investigators



To evaluate current practice of mechanical ventilation in the ICU and the characteristics and outcomes of patients receiving it.


Pre-planned sub-study of a multicenter, multinational cohort study (SAPS 3).


13,322 patients admitted to 299 intensive care units (ICUs) from 35 countries.



Main measurements and results

Patients were divided into three groups: no mechanical ventilation (MV), noninvasive MV (NIV), and invasive MV. More than half of the patients (53% [CI: 52.2-53.9%]) were mechanically ventilated at ICU admission. FiO2, Vt and PEEP used during invasive MV were on average 50% (40-80%), 8 mL/kg actual body weight (6.9-9.4 mL/kg) and 5 cmH2O (3-6 cmH2O), respectively. Several invMV patients (17.3% (CI:16.4-18.3%)) were ventilated with zero PEEP (ZEEP). These patients exhibited a significantly increased risk-adjusted hospital mortality, compared with patients ventilated with higher PEEP (O/E ratio 1.12 [1.05-1.18]). NIV was used in 4.2% (CI: 3.8-4.5%) of all patients and was associated with an improved risk-adjusted outcome (OR 0.79, [0.69-0.90]).


Ventilation mode and parameter settings for MV varied significantly across ICUs. Our results provide evidence that some ventilatory modes and settings could still be used against current evidence and recommendations. This includes ventilation with tidal volumes >8mL/kg body weight in patients with a low PaO2/FiO2 ratio and ZEEP in invMV patients. Invasive mechanical ventilation with ZEEP was associated with a worse outcome, even after controlling for severity of disease. Since our study did not document indications for MV, the association between MV settings and outcome must be viewed with caution.

Key Words

intensive care unit mechanical ventilation PEEP mortality risk adjustment outcome 



Statistical analysis was supported by a grant from the Fund of the Austrian National Bank, Project # 12690 ONB.

Our thanks go to the participants from all over the world, who dedicated a significant amount of their time and effort to this project, proving that it is still possible to conduct a worldwide academic study. A list of these centres can be found in the ESM file of the original SAPS 3 report (9).

Authors Contributions:

Study concept and design: PM, RM, VMR

Acquisition of data: SAPS 3 Participants

Analysis and interpretation of data: BM, PB, PM, RM, VMR

Drafting of the manuscript: PM, RM, VMR

Critical revision of the manuscript: All authors.

Supplementary material

134_2009_1449_MOESM1_ESM.doc (6.3 mb)
Supplementary material 1 (DOC 6470 kb)


  1. 1.
    Ibsen B (1954) The anaesthetist's viewpoint on the treatment of respiratory complications in poliomyelitis during the epidemic in copenhagen, 1952. Proc R Soc Med 47:72-74PubMedGoogle Scholar
  2. 2.
    Esteban A, Anzueto A, Frutos F, Alía I, Brochard L, Stewart TE, Benito S, Epstein SK, Apezteguía C, Nightingale P, Arroliga AC, Tobin MJ; Mechanical Ventilation International Study Group (2002) Characteristics and outcomes in adult patients receiving mechanical ventilation: A 28-day international study. JAMA 287:345-355PubMedCrossRefGoogle Scholar
  3. 3.
    Esteban A, Anzueto A, Alia I, Gordo F, Apezteguia C, Palizas F, Cide D, Goldwaser R, Soto L, Bugedo G, Rodrigo C, Pimentel J, Raimondi G, Tobin MJ (2000) How is mechanical ventilation employed in the intensive care unit? An international utilization review. Am J Respir Crit Care Med 161:1450-1458PubMedGoogle Scholar
  4. 4.
    The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The acute respiratory distress syndrome network. N Engl J Med 342:1301-1308CrossRefGoogle Scholar
  5. 5.
    Eichacker PQ, Gerstenberger EP, Banks SM, Cui X, Natanson C (2002) Meta-analysis of acute lung injury and acute respiratory distress syndrome trials testing low tidal volumes. Am J Respir Crit Care Med 166:1510-1514PubMedCrossRefGoogle Scholar
  6. 6.
    Gajic O, Frutos-Vivar F, Esteban A, Hubmayr RD, Anzueto A (2005) Ventilator settings as a risk factor for acute respiratory distress syndrome in mechanically ventilated patients. Intensive Care Med 31:922-926PubMedCrossRefGoogle Scholar
  7. 7.
    Gajic O, Dara SI, Mendez JL, Adesanya AO, Festic E, Caples SM, Rana R, St Sauver JL, Lymp JF, Afessa B, Hubmayr RD (2004) Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical venti-lation. Crit Care Med 32:1817-1824PubMedCrossRefGoogle Scholar
  8. 8.
    Mascia L, Zavala E, Bosma K, Pasero D, Decaroli D, Andrews P, Isnardi D, Davi A, Arguis MJ, Berardino M, Ducati A; Brain IT group (2007) High tidal volume is associated with the development of acute lung injury after severe brain injury: An international observational study. Crit Care Med 35:1815-1820PubMedCrossRefGoogle Scholar
  9. 9.
    Metnitz PG, Moreno RP, Almeida E, Jordan B, Bauer P, Campos RA, Iapichino G, Edbrooke D, Capuzzo M, Le Gall JR; SAPS 3 Investigators (2005) SAPS 3. From evaluation of the patient to evaluation of the intensive care unit. Part 1: Objectives, methods and cohort description. Intensive Care Med 31:1336-1344PubMedCrossRefGoogle Scholar
  10. 10.
    Moreno RP, Metnitz PG, Almeida E, Jordan B, Bauer P, Campos RA, Iapichino G, Edbrooke D, Capuzzo M, Le Gall JR; SAPS 3 Investigators (2005) SAPS 3. From evaluation of the patient to evaluation of the intensive care unit. Part 2: Development of a prognostic model for hospital mortality at icu admission. Intensive Care Med 31:1345-1355PubMedCrossRefGoogle Scholar
  11. 11.
    Vincent J-L, Moreno R, Takala J, Willats S, De Mendonça A, Bruining H, Reinhart CK, Suter PM, Thijs LG (1996) The sofa (sepsis-related organ failure assessment) score to describe organ dysfunction/failure. Intensive Care Med 22:707-710PubMedCrossRefGoogle Scholar
  12. 12.
    Moreno R, Vincent J-L, Matos R, Mendonça A, Cantraine F, Thijs L, Takala J, Sprung C, Antonelli M, Bruining H, Willatts S (1999) The use of maximum sofa score to quantify organ dysfunction/failure in intensive care. Results of a prospective, multicentre study. Intensive Care Med 25:686-696PubMedCrossRefGoogle Scholar
  13. 13.
    Kramer MS, Feinstein AR (1981) Clinical biostatistics. Liv. The biostatistics of concordance. Clin Pharmacol Ther 29:111-123PubMedGoogle Scholar
  14. 14.
    Brun-Buisson C, Minelli C, Bertolini G, Brazzi L, Pimentel J, Lewandowski K, Bion J, Romand J-A, Villar J, Thorsteinsson A, Damas P, Armaganidis A, Lemaire F; ALIVE Study Group (2004) Epidemiology and outcome of acute lung injury in european intensive care units. Results from the alive study. Intensive Care Med 30:51-61PubMedCrossRefGoogle Scholar
  15. 15.
    Esteban A, Ferguson ND, Meade MO, Frutos-Vivar F, Apezteguia C, Brochard L, Raymondos K, Nin N, Hurtado J, Tomicic V, González M, Elizalde J, Nightingale P, Abroug F, Pelosi P, Arabi Y, Moreno R, Jibaja M, D'Empaire G, Sandi F, Matamis D, Montañez AM, Anzueto A; VENTILA Group (2008) Evolution of mechanical ventilation in response to clinical research. Am J Respir Crit Care Med 177:170-177PubMedCrossRefGoogle Scholar
  16. 16.
    Carlucci A, Richard J-C, Wysocki M, E. L, Brochard L, and the SRLF Col-laborative Group on Mechanical Ventilation (2001) Noninvasive versus conventional mechanical ventilation. An epidemiologic survey. Am J Respir Crit Care Med 163:874-880Google Scholar
  17. 17.
    Demoule A, Girou E, Richard JC, Taille S, Brochard L (2006) Increased use of noninvasive ventilation in french intensive care units. Intensive Care Med 32:1747-1755PubMedCrossRefGoogle Scholar
  18. 18.
    Evans TW (2001) International consensus conferences in intensive care medicine: Noninvasive positive pressure ventilation in acute respiratory failure. Am J Respir Crit Care Med 163:283-291Google Scholar
  19. 19.
    Maheshwari V, Paioli D, Rothaar R, Hill NS (2006) Utilization of noninvasive ventilation in acute care hospitals: A regional survey. Chest 129:1226-1233PubMedCrossRefGoogle Scholar
  20. 20.
    Burns KE, Sinuff T, Adhikari NK, Meade MO, Heels-Ansdell D, Martin CM, Cook DJ (2005) Bilevel noninvasive positive pressure ventilation for acute respiratory failure: Survey of ontario practice. Crit Care Med 33:1477-1483PubMedCrossRefGoogle Scholar
  21. 21.
    Weinert CR, Gross CR, Marinelli WA (2003) Impact of randomized trials results on acute lung injury ventilator therapy in teaching hospitals. Am J Respir Crit Care Med 167:1304-1309PubMedCrossRefGoogle Scholar
  22. 22.
    Wongsurakiat P, Pierson DJ, Rubenfeld GD (2004) Changing pattern of ventilator settings in patients without acute lung injury: Changes over 11 years in a single institution. Chest 126:1281-1291PubMedCrossRefGoogle Scholar
  23. 23.
    Ferguson ND, Frutos-Vivar F, Esteban A, Anzueto A, Alía I, Brower RG, Stewart TE, Apezteguía C, González M, Soto L, Abroug F, Brochard L; Me-chanical Ventilation International Study Group (2005) Airway pressures, tidal volumes, and mortality in patients with acute respiratory distress syndrome. Crit Care Med 33:21-30PubMedCrossRefGoogle Scholar
  24. 24.
    Amato MB, Barbas CS, Medeiros DM, Schettino GD, Lorenzi Filho G, Kairalla RA, Deheinzelin D, Morais C, Fernandes ED, Takagaki TY (1995) Beneficial effects of the “Open lung approach” With low distending pressures in acute respiratory distress syndrome. A prospective randomized study on mechanical ventilation. Am J Respir Crit Care Med 152:1835–1846PubMedGoogle Scholar
  25. 25.
    Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354PubMedCrossRefGoogle Scholar
  26. 26.
    Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM, Brienza A, Bruno F, Slutsky AS (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: A randomized controlled trial. JAMA 282:54–61PubMedCrossRefGoogle Scholar
  27. 27.
    Fernández-Pérez ER, Keegan MT, Brown DR, Hubmayr RD, Gajic O (2006) Intraoperative tidal volume as a risk factor for respiratory failure after pneumonectomy. Anesthesiology 105:14-18PubMedCrossRefGoogle Scholar
  28. 28.
    Brochard L, Rauss A, Benito S, Conti G, Mancebo J, Rekik N, Gasparetto A, Lemaire F (1994) Comparison of three methods of gradual withdrawal from ventilatory support during weaning from mechanical ventilation. Am J Respir Crit Care Med 150:896-903PubMedGoogle Scholar
  29. 29.
    Ranieri VM, Mascia L, Fiore T, Bruno F, Brienza A, Giuliani R (1995) Cardiorespiratory effects of positive end-expiratory pressure during progressive tidal volume reduction (permissive hypercapnia) in patients with acute respira-tory distress syndrome. Anesthesiology 83:710-720PubMedCrossRefGoogle Scholar
  30. 30.
    Cereda M, Foti G, Musch G, Sparacino ME, Pesenti A (1996) Positive end-expiratory pressure prevents the loss of respiratory compliance during low tidal volume ventilation in acute lung injury patients. Chest 109:480-485PubMedCrossRefGoogle Scholar
  31. 31.
    Richard JC, Maggiore SM, Jonson B, Mancebo J, Lemaire F, Brochard L (2001) Influence of tidal volume on alveolar recruitment. Respective role of peep and a recruitment maneuver. Am J Respir Crit Care Med 163:1609-1613.PubMedGoogle Scholar
  32. 32.
    Richard JC, Brochard L, Vandelet P, Breton L, Maggiore SM, Jonson B, Clabault K, Leroy J, Bonmarchand G (2003) Respective effects of end-expiratory and end-inspiratory pressures on alveolar recruitment in acute lung injury. Crit Care Med 31:89-92PubMedCrossRefGoogle Scholar
  33. 33.
    Webb HH, Tierney DF (1974) Experimental pulmonary edema due to in-termittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am J Respir Crit Care Med 110:556-565Google Scholar
  34. 34.
    Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149:1327-1334PubMedGoogle Scholar
  35. 35.
    Corbridge TC, Wood LD, Crawford GP, Chudoba MJ, Yanos J, Sznajder JI (1990) Adverse effects of large tidal volume and low peep in canine acid aspi-ration. Am J Respir Crit Care Med 142:311-315Google Scholar
  36. 36.
    Stewart TE (2002) Controversies around lung protective mechanical ven-tilation. Am J Respir Crit Care Med 166:1421-1422PubMedCrossRefGoogle Scholar
  37. 37.
    de Durante G, del Turco M, Rustichini L, Cosimini P, Giunta F, Hudson LD, Slutsky AS, Ranieri VM (2002) ARDSnet lower tidal volume ventilatory strategy may generate intrinsic positive end-expiratory pressure in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 165:1271-1274PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Philipp G. H. Metnitz
    • 1
  • Barbara Metnitz
    • 2
  • Rui P. Moreno
    • 3
    Email author
  • Peter Bauer
    • 2
  • Lorenzo Del Sorbo
    • 4
  • Christoph Hoermann
    • 5
  • Susana Afonso de Carvalho
    • 3
  • V. Marco Ranieri
    • 4
  • on behalf of the SAPS 3 Investigators
  1. 1.ICU 13I1, Dept. of Anesthesiology and General Intensive CareMedical University of ViennaViennaAustria
  2. 2.Dept. of Medical StatisticsMedical University of ViennaViennaAustria
  3. 3.Unidade de Cuidados Intensivos Polivalente, Hospital de St. António dos CapuchosCentro Hospitalar de Lisboa CentralE.P.E. LisboaPortugal
  4. 4.Dipartimento di Anestesiologia e RianimazioneUniversità di Torino, Ospedale S. Giovanni Battista-MolinetteTorinoItaly
  5. 5.Transplant ICU, Dept. of Anesthesiology and General Intensive CareMedical University of InnsbruckInnsbruckAustria

Personalised recommendations