Intensive Care Medicine

, Volume 35, Issue 6, pp 1120–1128 | Cite as

Effects of frequency and inspiratory plateau pressure during recruitment manoeuvres on lung and distal organs in acute lung injury

  • Paula W. Steimback
  • Gisele P. Oliveira
  • Andréia F. Rzezinski
  • Pedro L. Silva
  • Cristiane S. N. B. Garcia
  • Graziela Rangel
  • Marcelo M. Morales
  • José R. Lapa e Silva
  • Vera L. Capelozzi
  • Paolo Pelosi
  • Patricia R. M. RoccoEmail author



To evaluate the effects of frequency and inspiratory plateau pressure (Pplat) during recruitment manoeuvres (RMs) on lung and distal organs in acute lung injury (ALI).


We studied paraquat-induced ALI rats. At 24 h, rats were anesthetized and RMs were applied using continuous positive airway pressure (CPAP, 40 cmH2O/40 s) or three-different sigh strategies: (a) 180 sighs/h and Pplat = 40 cmH2O (S180/40), (b) 10 sighs/h and Pplat = 40 cmH2O (S10/40), and (c) 10 sighs/h and Pplat = 20 cmH2O (S10/20).


S180/40 yielded alveolar hyperinflation and increased lung and kidney epithelial cell apoptosis as well as type III procollagen (PCIII) mRNA expression. S10/40 resulted in a reduction in epithelial cell apoptosis and PCIII expression. Static elastance and alveolar collapse were higher in S10/20 than S10/40.


The reduction in sigh frequency led to a protective effect on lung and distal organs, while the combination with reduced Pplat worsened lung mechanics and histology.


Acute lung injury Sigh Ventilator-induced lung injury Transpulmonary pressure Apoptosis 



We would like to express our gratitude to Mr. Andre Benedito da Silva for animal care, Mrs. Miriam Regina Taborda Simone and Ana Lucia Neves da Silva for their help with microscopy, Ms. Jaqueline Lima do Nascimento for her skilful technical assistance during the experiments, and Mrs. Moira Elizabeth Schöttler for assistance in editing the manuscript.

Supplementary material

134_2009_1439_MOESM1_ESM.doc (2.5 mb)
Supplementary material 1 (DOC 2524 kb)


  1. 1.
    Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354PubMedCrossRefGoogle Scholar
  2. 2.
    Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308Google Scholar
  3. 3.
    Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Cooper DJ, Davies AR, Hand LE, Zhou Q, Thabane L, Austin P, Lapinsky S, Baxter A, Russell J, Skrobik Y, Ronco JJ, Stewart TE, Lung Open Ventilation Study Investigators (2008) Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299:637–645PubMedCrossRefGoogle Scholar
  4. 4.
    Mercat A, Richard JC, Vielle B, Jaber S, Osman D, Diehl JL, Lefrant JY, Prat G, Richecoeur J, Nieszkowska A, Gervais C, Baudot J, Bouadma L, Brochard L, Expiratory Pressure (Express) Study Group (2008) Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299:646–655PubMedCrossRefGoogle Scholar
  5. 5.
    Pelosi P, Goldner M, McKibben A, Adams A, Eccher G, Caironi P, Losappio S, Gattinoni L, Marini JJ (2001) Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med 164:122–130PubMedGoogle Scholar
  6. 6.
    Nieszkowska A, Lu Q, Vieira S, Elman M, Fetita C, Rouby JJ (2004) Incidence and regional distribution of lung overinflation during mechanical ventilation with positive end-expiratory pressure. Crit Care Med 32:1496–1503PubMedCrossRefGoogle Scholar
  7. 7.
    Imai Y, Parodo J, Kajikawa O, de Perrot M, Fischer S, Edwards V, Cutz E, Liu M, Keshavjee S, Martin TR, Marshall JC, Ranieri VM, Slutsky AS (2003) Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. JAMA 289:2104–2112PubMedCrossRefGoogle Scholar
  8. 8.
    Piacentini E, Villagrá A, López-Aguilar J, Blanch L (2004) Clinical review: the implications of experimental and clinical studies of recruitment maneuvers in acute lung injury. Crit Care 8:115–121PubMedCrossRefGoogle Scholar
  9. 9.
    Grasso S, Mascia L, Del Turco M, Malacarne P, Giunta F, Brochard L, Slutsky AS, Ranieri VM (2002) Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilatory strategy. Anesthesiology 96:795–802PubMedCrossRefGoogle Scholar
  10. 10.
    Musch G, Harris RS, Vidal Melo MF, O’Neill KR, Layfield JD, Winkler T, Venegas JG (2004) Mechanism by which a sustained inflation can worsen oxygenation in acute lung injury. Anesthesiology 100:323–330PubMedCrossRefGoogle Scholar
  11. 11.
    Oczenski W, Hörmann C, Keller C, Lorenzl N, Kepka A, Schwarz S, Fitzgerald RD (2004) Recruitment maneuvers after a positive end expiratory pressure trial do not induce sustained effects in early adult respiratory distress syndrome. Anesthesiology 101:620–625PubMedCrossRefGoogle Scholar
  12. 12.
    Farias LL, Faffe DS, Xisto DG, Santana MC, Lassance R, Prota LF, Amato MB, Morales MM, Zin WA, Rocco PR (2005) Positive end-expiratory pressure prevents lung mechanical stress caused by recruitment/derecruitment. J Appl Physiol 98:53–61PubMedCrossRefGoogle Scholar
  13. 13.
    Riva DR, Oliveira MB, Rzezinski AF, Rangel G, Capelozzi VL, Zin WA, Morales MM, Pelosi P, Rocco PR (2008) Recruitment maneuver in pulmonary and extrapulmonary experimental acute lung injury. Crit Care Med 36:1900–1908PubMedCrossRefGoogle Scholar
  14. 14.
    Pelosi P, Cadringher P, Bottino N, Panigada M, Carrieri F, Riva E, Lissoni A, Gattinoni L (1999) Sigh in acute respiratory distress syndrome. Am J Respir Crit Care Med 159:872–880PubMedGoogle Scholar
  15. 15.
    Pelosi P, Bottino N, Chiumello D, Caironi P, Panigada M, Gamberoni C, Colombo G, Bigatello LM, Gattinoni L (2003) Sigh in supine and prone position during acute respiratory distress syndrome. Am J Respir Crit Care Med 167:521–527PubMedCrossRefGoogle Scholar
  16. 16.
    Fujino Y, Goddon S, Dolhnikoff M, Hess D, Amato MB, Kacmarek RM (2001) Repetitive high-pressure recruitment maneuvers required to maximally recruit lung in a sheep model of acute respiratory distress syndrome. Crit Care Med 29:1579–1586PubMedCrossRefGoogle Scholar
  17. 17.
    Allen GB, Suratt BT, Rinaldi L, Petty JM, Bates JH (2006) Choosing the frequency of deep inflation in mice: balancing recruitment against ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 91:710–717CrossRefGoogle Scholar
  18. 18.
    Steimback PW, Silva PL, Oliveira GP, Rangel G, Capelozzi VL, Morales MM, Pelosi P, Rocco PR (2007) Sigh induced lung mechanical stress in acute lung injury. Am J Resp Crit Care A22Google Scholar
  19. 19.
    Weibel ER (1990) Morphometry: stereological theory and practical methods. In: Gil J (ed) Models of lung disease—microscopy and structural methods. Marcel Dekker, New York, pp 199–247Google Scholar
  20. 20.
    Menezes SL, Bozza PT, Neto HC, Laranjeira AP, Negri EM, Capelozzi VL, Zin WA, Rocco PR (2005) Pulmonary and extrapulmonary acute lung injury: inflammatory and ultrastructural analyses. J Appl Physiol 98:1777–1783PubMedCrossRefGoogle Scholar
  21. 21.
    Baptista AL, Parra ER, Filho JV, Kairalla RA, de Carvalho CR, Capelozzi VL (2006) Structural features of epithelial remodeling in usual interstitial pneumonia histologic pattern. Lung 184:239–244PubMedCrossRefGoogle Scholar
  22. 22.
    Rocco PR, Negri EM, Kurtz PM, Vasconcellos FP, Silva GH, Capelozzi VL, Romero PV, Zin WA (2001) Lung tissue mechanics and extracellular matrix remodeling in acute lung injury. Am J Respir Crit Care Med 164:1067–1071PubMedGoogle Scholar
  23. 23.
    Fabisiak JP, Kagan VE, Tyurina YY, Tyurin VA, Lazo JS (1998) Paraquat-induced phosphatidylserine oxidation and apoptosis are independent of activation of PLA2. Am J Physiol 274:793–802Google Scholar
  24. 24.
    Gattinoni L, Caironi P, Cressoni M, Chiumello D, Ranieri VM, Quintel M, Russo S, Patroniti N, Cornejo R, Bugedo G (2006) Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 354:1775–1786PubMedCrossRefGoogle Scholar
  25. 25.
    Chiumello D, Carlesso E, Cadringher P, Caironi P, Valenza F, Polli F, Tallarini F, Cozzi P, Cressoni M, Colombo A, Marini JJ, Gattinoni L (2008) Lung stress and strain during mechanical ventilation of the acute respiratory distress syndrome. Am J Respir Crit Care Med 178:346–355PubMedCrossRefGoogle Scholar
  26. 26.
    Gattinoni L, Carlesso E, Cadringher P, Valenza F, Vagginelli F, Chiumello D (2003) Physical and biological triggers of ventilator-induced lung injury and its prevention. Eur Respir J 47:15s–25sCrossRefGoogle Scholar
  27. 27.
    Rothen HU, Sporre B, Engberg G, Wegenius G, Reber A, Hedenstierna G (1995) Prevention of atelectasis during general anaesthesia. Lancet 345:1387–1391PubMedCrossRefGoogle Scholar
  28. 28.
    Kulkarni AC, Kuppusamy P, Parinandi N (2007) Oxygen, the lead actor in the pathophysiologic drama: enactment of the trinity of normoxia, hypoxia, and hyperoxia in disease and therapy. Antioxid Redox Signal 9:1717–1730PubMedCrossRefGoogle Scholar
  29. 29.
    Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323PubMedGoogle Scholar
  30. 30.
    Garcia CS, Rocco PR, Facchinetti LD, Lassance RM, Caruso P, Deheinzelin D, Morales MM, Romero PV, Faffe DS, Zin WA (2004) What increases type III procollagen mRNA levels in lung tissue: stress induced by changes in force or amplitude? Respir Physiol Neurobiol 144:59–70PubMedCrossRefGoogle Scholar
  31. 31.
    de Carvalho ME, Dolhnikoff M, Meireles SI, Reis LF, Martins MA, Deheinzelin D (2007) Effects of overinflation on procollagen type III expression in experimental acute lung injury. Crit Care 11:R23PubMedCrossRefGoogle Scholar
  32. 32.
    Berg JT, Fu Z, Breen EC, Tran HC, Mathieu-Costello O, West JB (1997) High lung inflation increases mRNA levels of ECM components and growth factors in lung parenchyma. J Appl Physiol 83:120–128PubMedGoogle Scholar
  33. 33.
    Nakos G, Batistatou A, Galiatsou E, Konstanti E, Koulouras V, Kanavaros P, Doulis A, Kitsakos A, Karachaliou A, Lekka ME, Bai M (2006) Lung and ‘end organ’ injury due to mechanical ventilation in animals: comparison between the prone and supine positions. Crit Care 10:R38PubMedCrossRefGoogle Scholar
  34. 34.
    Ranieri VM, Giunta F, Suter PM, Slutsky AS (2000) Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome. JAMA 284:43–44PubMedCrossRefGoogle Scholar
  35. 35.
    Koyner JL, Murray PT (2008) Mechanical ventilation and lung–kidney interactions. Clin J Am Soc Nephrol 3:562–570PubMedCrossRefGoogle Scholar
  36. 36.
    Martin TR (2008) Interactions between mechanical and biological processes in acute lung injury. Proc Am Thorac Soc 5:291–296PubMedCrossRefGoogle Scholar
  37. 37.
    Conrad SA, Zhang S, Arnold TC, Scott LK, Carden DL (2005) Protective effects of low respiratory frequency in experimental ventilator-associated lung injury. Crit Care Med 33:835–840PubMedCrossRefGoogle Scholar
  38. 38.
    Garcia CS, Abreu SC, Soares RM, Prota LF, Figueira RC, Morales MM, Capelozzi VL, Zin WA, Rocco PR (2008) Pulmonary morphofunctional effects of mechanical ventilation with high inspiratory air flow. Crit Care Med 36:232–239PubMedGoogle Scholar
  39. 39.
    Vaporidi K, Voloudakis G, Priniannakis G, Kondili E, Koutsopoulos A, Tsatsanis C, Georgopoulos D (2008) Effects of respiratory rate on ventilator-induced lung injury at a constant PaCO2 in a mouse model of normal lung. Crit Care Med 36:1277–1283PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Paula W. Steimback
    • 1
  • Gisele P. Oliveira
    • 1
  • Andréia F. Rzezinski
    • 1
  • Pedro L. Silva
    • 1
  • Cristiane S. N. B. Garcia
    • 1
  • Graziela Rangel
    • 2
  • Marcelo M. Morales
    • 2
  • José R. Lapa e Silva
    • 3
  • Vera L. Capelozzi
    • 4
  • Paolo Pelosi
    • 5
  • Patricia R. M. Rocco
    • 1
    Email author
  1. 1.Laboratory of Pulmonary Investigation, Instituto de Biofísica Carlos Chagas Filho, C.C.S.Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of BiophysicsRio de JaneiroBrazil
  3. 3.Department of PneumologyFederal University of Rio de JaneiroRio de JaneiroBrazil
  4. 4.Department of PathologyUniversity of São PauloSão PauloBrazil
  5. 5.Department of Ambient, Health and SafetyUniversity of InsubriaVareseItaly

Personalised recommendations