Advertisement

Intensive Care Medicine

, Volume 35, Issue 7, pp 1225–1233 | Cite as

Arterial blood pressure during early sepsis and outcome

  • Martin W. Dünser
  • Jukka Takala
  • Hanno Ulmer
  • Viktoria D. Mayr
  • Günter Luckner
  • Stefan Jochberger
  • Fritz Daudel
  • Philipp Lepper
  • Walter R. Hasibeder
  • Stephan M. Jakob
Original

Abstract

Objective

To evaluate the association between arterial blood pressure (ABP) during the first 24 h and mortality in sepsis.

Design

Retrospective cohort study.

Setting

Multidisciplinary intensive care unit (ICU).

Patients and participants

A total of 274 septic patients.

Interventions

None.

Measurements and results

Hemodynamic, and laboratory parameters were extracted from a PDMS database. The hourly time integral of ABP drops below clinically relevant systolic arterial pressure (SAP), mean arterial pressure (MAP), and mean perfusion pressure (MPP = MAP − central venous pressure) levels was calculated for the first 24 h after ICU admission and compared with 28-day-mortality. Binary and linear regression models (adjusted for SAPS II as a measure of disease severity), and a receiver operating characteristic (ROC) analysis were applied. The areas under the ROC curve were largest for the hourly time integrals of ABP drops below MAP 60 mmHg (0.779 vs. 0.764 for ABP drops below MAP 55 mmHg; P ≤ 0.01) and MPP 45 mmHg. No association between the hourly time integrals of ABP drops below certain SAP levels and mortality was detected. One or more episodes of MAP < 60 mmHg increased the risk of death by 2.96 (CI 95%, 1.06–10.36, = 0.04). The area under the ROC curve to predict the need for renal replacement therapy was highest for the hourly time integral of ABP drops below MAP 75 mmHg.

Conclusions

A MAP level ≥ 60 mmHg may be as safe as higher MAP levels during the first 24 h of ICU therapy in septic patients. A higher MAP may be required to maintain kidney function.

Keywords

Hypotension Mean arterial blood pressure Mean perfusion pressure Sepsis 

Notes

Acknowledgments

The authors are indebted to Mrs. Pia Burri and Mr. Roy Lanz for their invaluable assistance in extracting the study variables from the database.

Supplementary material

134_2009_1427_MOESM1_ESM.doc (222 kb)
(DOC 221 kb)

References

  1. 1.
    Mayr VD, Dünser MW, Greil V, Jochberger S, Luckner G, Ulmer H, Friesenecker BE, Takala J, Hasibeder WR (2006) Causes of death and determinants of outcome in critically ill patients. Crit Care 10:R154PubMedCrossRefGoogle Scholar
  2. 2.
    Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, Suppes R, Feinstein D, Zanotti S, Taiberg L, Gurka D, Kumar A, Cheang M (2006) Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34:1589–1596PubMedCrossRefGoogle Scholar
  3. 3.
    Bernardin G, Pradier C, Tiger F, Deloffre P, Mattei M (1996) Blood pressure and arterial lactate level are early indicators of short-term survival in human septic shock. Intensive Care Med 22:17–25PubMedCrossRefGoogle Scholar
  4. 4.
    Martin C, Viviand X, Leone M, Thirion X (2000) Effect of norepinephrine on the outcome of septic shock. Crit Care Med 28:2758–2765PubMedCrossRefGoogle Scholar
  5. 5.
    Dünser MW, Mayr AJ, Ulmer H, Knotzer H, Sumann G, Pajk W, Friesenecker B, Hasibeder WR (2003) Arginine vasopressin in advanced vasodilatory shock: a prospective, randomized, controlled study. Circulation 107:2313–2319PubMedCrossRefGoogle Scholar
  6. 6.
    Dellinger RP (2003) Cardiovascular management of septic shock. Crit Care Med 31:946–955PubMedCrossRefGoogle Scholar
  7. 7.
    Annane D, Bellissant E, Cavaillon JM (2005) Septic shock. Lancet 365:63–78PubMedCrossRefGoogle Scholar
  8. 8.
    Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, Gea-Banacloche J, Keh D, Marshall JC, Parker MM, Ramsay G, Zimmerman JL, Vincent JL, Levy MM, Surviving Sepsis Campaign Management Guidelines Committee (2004) Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 32:858–873PubMedCrossRefGoogle Scholar
  9. 9.
    Meier-Hellmann A, Reinhart K, Bredle DL, Specht M, Spies CD, Hannemann L (1997) Epinephrine impairs splanchnic perfusion in septic shock. Crit Care Med 25:399–404PubMedCrossRefGoogle Scholar
  10. 10.
    Lopez A, Lorente JA, Steingrub J, Bakker J, McLuckie A, Willatts S, Brockway M, Anzueto A, Holzapfel L, Breen D, Silverman MS, Takala J, Donaldson J, Arneson C, Grove G, Grossman S, Grover R (2004) Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med 32:21–30PubMedCrossRefGoogle Scholar
  11. 11.
    LeDoux D, Astiz ME, Carpati CM, Rackow EC (2000) Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med 28:2729–2732PubMedCrossRefGoogle Scholar
  12. 12.
    Bourgoin A, Leone M, Delmas A, Garnier F, Albanese J, Martin C (2005) Increasing mean arterial pressure in patients with septic shock: effects on oxygen variables and renal function. Crit Care Med 33:780–786PubMedCrossRefGoogle Scholar
  13. 13.
    Varpula M, Tallgren M, Saukkonen K, Voipio-Pulkki LM, Pettilä V (2005) Hemodynamic variables related to outcome in septic shock. Intensive Care Med 31:1066–1071PubMedCrossRefGoogle Scholar
  14. 14.
    Dünser MW, Daudel F, Luckner G, Mayr V, Jochberger S, Hasibeder WR, Takala J, Jakob S (2007) Arterial blood pressure during early sepsis. Intensive Care Med 33(Suppl 2):A125Google Scholar
  15. 15.
    Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G, SCCM/ESICM/ACCP/ATS/SIS (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 31:1250–1256PubMedCrossRefGoogle Scholar
  16. 16.
    Makivirta A, Koski E, Kari A, Sukuvaara T (1991) The median filter as a preprocessor for a patient monitor limit alarm system in intensive care. Comput Methods Programs Biomed 34:139–144PubMedCrossRefGoogle Scholar
  17. 17.
    Le Gall JR, Lemeshow S, Saulnier F (1993) A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 270:2957–2963PubMedCrossRefGoogle Scholar
  18. 18.
    Knaus WA, Zimmerman JE, Wagner DP, Draper EA, Lawrence DE (1981) APACHE—acute physiology and chronic health evaluation: a physiologically based classification system. Crit Care Med 9:591–597PubMedCrossRefGoogle Scholar
  19. 19.
    Jakob SM, Korhonen I, Ruokonen E, Virtanen T, Kogan A, Takala J (2000) Detection of artifacts in monitored trends in intensive care. Comput Methods Programs Biomed 63:203–209PubMedCrossRefGoogle Scholar
  20. 20.
    Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, Reinhart CK, Suter PM, Thijs LG (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the working group on sepsis-related problems of the european society of intensive care medicine. Intensive Care Med 22:707–710PubMedCrossRefGoogle Scholar
  21. 21.
    DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating curves: a nonparametric approach. Biometrics 44:837–845PubMedCrossRefGoogle Scholar
  22. 22.
    Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M, Early Goal-Directed Therapy Collaborative Group (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377PubMedCrossRefGoogle Scholar
  23. 23.
    Jones AE, Yiannibas V, Johnson C, Kline JA (2006) Emergency department hypotension predicts sudden unexpected in-hospital mortality. A prospective cohort study. Chest 130:941–946PubMedCrossRefGoogle Scholar
  24. 24.
    Beale RJ, Hollenberg SM, Vincent JL, Parrillo JE (2004) Vasopressor and inotropic support in septic shock: an evidence-based review. Crit Care Med 32:S455–465PubMedCrossRefGoogle Scholar
  25. 25.
    Guyton AC, Hall JE (2000) Urine formation by the kidneys: I. Glomerular filtration, renal blood flow, and their control. In: Guyton AC, Hall JE (eds) Textbook of medical physiology. Saunders, Philadelphia, pp 279–294Google Scholar
  26. 26.
    Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE (2005) Relation between muscle Na + K + ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet 365:871–875PubMedCrossRefGoogle Scholar
  27. 27.
    Rowell LB (1986) Control of individual vascular beds: splanchnic and renal circulations. In: Rowell LB (ed) Human circulation. Regulation during physical stress. Oxford University Press, Oxford, pp 78–95Google Scholar
  28. 28.
    Bellomo R, Kellum JA, Wisniewski SR, Pinsky MR (1999) Effects of norepinephrine on the renal vasculature in normal and endotoxemic dogs. Am J Respir Crit Care Med 159:1186–1192PubMedGoogle Scholar
  29. 29.
    Deruddre S, Cheisson G, Mazoit JX, Vicaut E, Benhamou D, Duranteau J (2007) Renal arterial resistance in septic shock: effects of increasing mean arterial pressure with norepinephrine on the renal resistive index with Doppler ultrasonography. Intensive Care Med 33:1557–1562PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Martin W. Dünser
    • 1
  • Jukka Takala
    • 1
  • Hanno Ulmer
    • 2
  • Viktoria D. Mayr
    • 3
  • Günter Luckner
    • 3
  • Stefan Jochberger
    • 3
  • Fritz Daudel
    • 1
  • Philipp Lepper
    • 1
  • Walter R. Hasibeder
    • 4
  • Stephan M. Jakob
    • 1
  1. 1.Department of Intensive Care MedicineInselspitalBernSwitzerland
  2. 2.Institute of Medical BiostatisticsInnsbruck Medical UniversityInnsbruckAustria
  3. 3.Department of Anesthesiology and Critical Care MedicineInnsbruck Medical UniversityInnsbruckAustria
  4. 4.Department of Anesthesiology and Critical Care MedicineKrankenhaus Ried im InnkreisRied im InnkreisAustria

Personalised recommendations