Advertisement

Modeling the effect of time-dependent exposure on intensive care unit mortality

  • Martin WolkewitzEmail author
  • Jan Beyersmann
  • Petra Gastmeier
  • Martin Schumacher
Original

Abstract

Purpose

To illustrate modern survival models with focus on the temporal dynamics of intensive care data. A typical situation is given in which time-dependent exposures and competing events are present.

Methods

We briefly review the following established statistical methods: logistic regression, regression models for event-specific hazards and the subdistribution hazard. These approaches are compared by showing advantages as well as disadvantages. All methods are applied to real data from a study of day-by-day ICU surveillance.

Results

Standard logistic regression ignores the time-dependent nature of the data and is only a crude approach. Cumulative hazards and probability plots add important information and provide a deep insight into the temporal dynamics.

Conclusion

This paper might help to encourage researchers working in hospital epidemiology to apply adequate statistical models to complex medical questions.

Keywords

Nosocomial infections Competing risks Event-specific hazard Subdistribution hazard Population attributable fraction 

Abbreviations

NP

Nosocomial pneumonia

ICU

Intensive care unit

PAF

Population attributable fraction

OR

Odds ratio

HR

Hazard ratio

CI

Confidence interval

PHREG

Proportional hazards regression

Notes

Acknowledgments

We thank the four anonymous reviewers for their comments and Caroline Mavergames for checking the final manuscript for English language grammar and style. They helped to improve the manuscript. This project was funded by the Deutsche Forschungsgemeinschaft DFG, project FOR 534.

Supplementary material

134_2009_1423_MOESM1_ESM.pdf (36 kb)
Supplementary material PDF (35 KB)

References

  1. 1.
    Cosgrove S, Carmeli Y (2003) The impact of antimicrobial resistance on health and economic outcomes. Clin Infect Dis 36:1433–1437PubMedCrossRefGoogle Scholar
  2. 2.
    Song X, Srinivasan A, Plaut D, Perl T (2003) Effect of nosocomial vancomycin-resistant enterococcal bacteremia on mortality, length of stay, and costs. Infect Control Hosp Epidemiol 24:251–256PubMedCrossRefGoogle Scholar
  3. 3.
    Tacconelli E, Pop-Vicas A, D’Agata E (2006) Increased mortality among elderly patients with meticillin-resistant Staphylococcus aureus bacteraemia. J Hosp Infect 64:251–256PubMedCrossRefGoogle Scholar
  4. 4.
    Vandewoude K, Blot S, Benoit D, Colardyn F, Vogelaers D (2004) Invasive aspergillosis in critically ill patients: attributable mortality and excesses in length of ICU stay and ventilator dependence. J Hosp Infect 56:269–276PubMedCrossRefGoogle Scholar
  5. 5.
    Shorr A, Combes A, Kollef M, Chastre J (2006) Methicillin-resistant Staphylococcus aureus prolongs intensive care unit stay in ventilator-associated pneumonia, despite initially appropriate antibiotic therapy. Crit Care Med 34:700–706PubMedCrossRefGoogle Scholar
  6. 6.
    Asensio A, Torres J (1999) Quantifying excess length of postoperative stay attributable to infections: a comparison of methods. J Clin Epidemiol 52:1249–1256PubMedCrossRefGoogle Scholar
  7. 7.
    Samore M, Shen S, Greene T, Stoddard G, Sauer B, Shinogle J, Nebeker J, Harbarth S (2007) A simulation-based evaluation of methods to estimate the impact of an adverse event on hospital length of stay. Med Care 45:S108–S115PubMedCrossRefGoogle Scholar
  8. 8.
    Antonelli M, Azoulay E, Bonten M, Chastre J, Citerio G, Conti G, De Backer D, Lemaire F, Gerlach H, Groeneveld J, Hedenstierna G, Macrae D, Mancebo J, Maggiore S, Mebazaa A, Metnitz P, Pugin J, Wernerman J, Zhang H (2008) Year in review in intensive care medicine, 2007. III: ethics and legislation, health services research, pharmacology and toxicology, nutrition and paediatrics. Intensive Care Med 34:598–609PubMedCrossRefGoogle Scholar
  9. 9.
    Andrews P, Azoulay E, Antonelli M, Brochard L, Brun-Buisson C, De Backer D, Dobb G, Fagon J, Gerlach H, Groeneveld J, Macrae D, Mancebo J, Metnitz P, Nava S, Pugin J, Pinsky M, Radermacher P, Richard C (2007) Year in review in Intensive Care Medicine, 2006. II: infections and sepsis, haemodynamics, elderly, invasive and noninvasive mechanical ventilation, weaning, ARDS. Intensive Care Med 33:214–229PubMedCrossRefGoogle Scholar
  10. 10.
    Mayhall C (2004) Hospital epidemiology and infection control, Chap 93. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  11. 11.
    Schulgen G, Kropec A, Kappstein I, Daschner F, Schumacher M (2000) Estimation of extra hospital stay attributable to nosocomial infections: heterogeneity and timing of events. J Clin Epidemiol 53:409–417PubMedCrossRefGoogle Scholar
  12. 12.
    Putter H, Fiocco M, Geskus R (2007) Tutorial in biostatistics: competing risks and multi-state models. Stat Med 26:2389–2430PubMedCrossRefGoogle Scholar
  13. 13.
    Beyersmann J, Gastmeier P, Grundmann H, Baerwolff S, Geffers C, Behnke M, Rueden H, Schumacher M (2006) Use of multistate models to assess prolongation of intensive care unit stay due to nosocomial infection. Infect Control Hosp Epidemiol 27:493–499PubMedCrossRefGoogle Scholar
  14. 14.
    Schumacher M, Wangler M, Wolkewitz M, Beyersmann J (2007) Attributable mortality due to nosocomial infections: a simple and useful application of multistate models. Methods Inf Med 46:595–600PubMedGoogle Scholar
  15. 15.
    Wolkewitz M, Vonberg R, Grundmann H, Beyersmann J, Gastmeier P, Baerwolff S, Geffers C, Behnke M, Rueden H, Schumacher M (2008) Risk factors for the development of nosocomial pneumonia and mortality on intensive care units: application of competing risks models. Crit Care 12:R44PubMedCrossRefGoogle Scholar
  16. 16.
    Resche-Rigon M, Azoulay E, Chevret S (2006) Evaluating mortality in intensive care units: contribution of competing risks analyses. Crit Care 10:R5. doi: 10.1186/cc3921 PubMedCrossRefGoogle Scholar
  17. 17.
    Gastmeier P, Geffers C, Sohr D, Dettenkofer M, Daschner F, Rueden H (2003) Five years working with the German nosocomial infection surveillance system (Krankenhaus Infektions Surveillance System). Am J Infect Control 31:316–321PubMedCrossRefGoogle Scholar
  18. 18.
    Garner J, Jarvis W, Emori T, Horan T, Hughes J (1988) CDC definitions for nosocomial infections, 1988. Am J Infect Control 16:128–140PubMedCrossRefGoogle Scholar
  19. 19.
    Beyersmann J, Schumacher M (2008) Time-dependent covariates in the proportional subdistribution hazards model for competing risks. Biostatistics 9:765–776PubMedCrossRefGoogle Scholar
  20. 20.
    Hougaard P (1999) Multi-state models: a review. Lifetime Data Anal 5:239–264PubMedCrossRefGoogle Scholar
  21. 21.
    Klein J, Moeschberger M (2003) Survival analysis: techniques for censored and truncated data. Springer, New YorkGoogle Scholar
  22. 22.
    Armitage P, Colton T (1998) Encyclopedia of biostatistics. Wiley, Chichester, pp 2968–2972Google Scholar
  23. 23.
    Annesi I, Moreau T, Lellouch J (1989) Efficiency of the logistic regression and Cox proportional hazards models in longitudinal studies. Stat Med 8:1515–1521PubMedCrossRefGoogle Scholar
  24. 24.
    Callas P, Pastides H, Hosmer D (1998) Empirical comparisons of proportional hazards, poisson, and logistic regression modeling of occupational cohort data. Am J Ind Med 33:33–47PubMedCrossRefGoogle Scholar
  25. 25.
    de Irala-Estevez J, Martinez-Concha D, Diaz-Molina C, Masa-Calles J, Serrano del Castillo A, Fernandez-Crehuet Navajas R (2001) Comparison of different methodological approaches to identify risk factors of nosocomial infection in intensive care units. Intensive Care Med 27:1254–1262PubMedCrossRefGoogle Scholar
  26. 26.
    Fine J, Gray RJ (1999) A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc 94:496–509CrossRefGoogle Scholar
  27. 27.
    R Development Core Team (2005) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: http://www.R-project.org, ISBN 3-900051-07-0
  28. 28.
    Schoenfeld D (2006) Survival methods, including those using competing risk analysis, are not appropriate for intensive care unit outcome studies. Crit Care 10:103. doi: 10.1186/cc3949 PubMedCrossRefGoogle Scholar
  29. 29.
    Chevret S (2001) Logistic or Cox model to identify risk factors of nosocomial infection: still a controversial issue. Intensive Care Med 27:1559–1560PubMedCrossRefGoogle Scholar
  30. 30.
    van Walraven C, Davis D, Forster A, Wells G (2004) Time-dependent bias was common in survival analyses published in leading clinical journals. J Clin Epidemiol 57:672–682PubMedCrossRefGoogle Scholar
  31. 31.
    Beyersmann J, Gastmeier P, Wolkewitz M, Schumacher M (2008) An easy mathematical proof showed that time-dependent bias inevitably leads to biased effect estimation. J Clin Epidemiol 61:1216–1221PubMedCrossRefGoogle Scholar
  32. 32.
    Barnett A, Graves N (2008) Competing risks models and time-dependent covariates. Crit Care 12:134. doi: 10.1186/cc6840 PubMedCrossRefGoogle Scholar
  33. 33.
    Wolkewitz M, Beyersmann J, Gastmeier P, Schumacher M (2008) Regression modelling in hospital epidemiology: a statistical note. Crit Care 12:427. doi: 10.1186/cc6852 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Martin Wolkewitz
    • 1
    • 2
  • Jan Beyersmann
    • 1
    • 2
  • Petra Gastmeier
    • 3
  • Martin Schumacher
    • 1
  1. 1.Institute of Medical Biometry and Medical InformaticsUniversity Medical Center FreiburgFreiburgGermany
  2. 2.Freiburg Centre for Data Analysis and ModellingUniversity of FreiburgFreiburgGermany
  3. 3.Institute of Hygiene and Environmental MedicineCharité-University Medicine BerlinBerlinGermany

Personalised recommendations