Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Impact of mild hypoxemia on renal function and renal resistive index during mechanical ventilation

  • 400 Accesses

  • 40 Citations



Short-term hypoxemia affects diuresis and natriuresis in healthy individuals. No data are available on the impact of the mild hypoxemia levels usually tolerated in critically ill patients receiving mechanical ventilation.


To assess the renal effects of mild hypoxemia during mechanical ventilation for acute lung injury (ALI).


Prospective, physiological study in 12 mechanically ventilated patients with ALI. Patients were studied at baseline with an arterial saturation (SaO2) of 96% [94–98] then a comparison was performed between SaO2 values of 88–90% (mild hypoxemia) and 98–99% (high oxygenation).

Main results

FiO2 was set at 0.25 [0.23–0.32] and 0.7 [0.63–0.8], respectively, to obtain SaO2 of 89 [89–90] and 99% [98–99]. Hemodynamic or respiratory parameters were not significantly affected by FiO2 levels. Compared with high oxygenation level, mild hypoxemia using low FiO2 was associated with increase in diuresis (median [interquartile range], 67 [55–105] vs. 55 [45–60] ml/h; = 0.003) and in doppler-based renal resistive index (RI) (0.78 [0.66–0.85] vs. 0.72 [0.60–0.78]; = 0.003). The 2-h calculated creatinine clearance also increased (63 [46–103] vs. 35 [30–85] ml/min; = 0.005) without change in urinary creatinine (P = 0.13). No significant change in natriuresis was observed. Half of the patients were under norepinephrine infusion and the renal response did not differ according to the presence of vasopressors.


In patients with ALI, mild hypoxemia related to short-term low FiO2 induce increases in diuresis and in renal RI. This latter point suggests intra-renal mechanisms that need to be further investigated.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2



Resistive index


Adult respiratory distress syndrome


Acute lung injury


Interquartile ranges


Intensive care unit


Positive end-expiratory pressure


Tidal volume


Excreted fraction of sodium


  1. 1.

    (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 342:1301–1308

  2. 2.

    Brochard L, Roudot-Thoraval F, Roupie E, Delclaux C, Chastre J, Fernandez-Mondejar E, Clementi E, Mancebo J, Factor P, Matamis D, Ranieri M, Blanch L, Rodi G, Mentec H, Dreyfuss D, Ferrer M, Brun-Buisson C, Tobin M, Lemaire F (1998) Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The Multicenter Trail Group on Tidal Volume reduction in ARDS. Am J Respir Crit Care Med 158:1831–1838

  3. 3.

    Richard JC, Girault C, Leteurtre S, Leclerc F (2005) Prise en charge ventilatoire du syndrome de détresse respiratoire aiguë de l’adulte et de l’enfant (nouveau-né exclu)—Recommandations d’Experts de la Société de Réanimation de Langue Française. Réanimation 14:313–322

  4. 4.

    Aboab J, Jonson B, Kouatchet A, Taille S, Niklason L, Brochard L (2006) Effect of inspired oxygen fraction on alveolar derecruitment in acute respiratory distress syndrome. Intensive Care Med 32:1979–1986

  5. 5.

    Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, Schoenfeld D, Thompson BT (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351:327–336

  6. 6.

    Brezis M, Rosen S (1995) Hypoxia of the renal medulla–its implications for disease. N Engl J Med 332:647–655

  7. 7.

    Epstein FH, Agmon Y, Brezis M (1994) Physiology of renal hypoxia. Ann N Y Acad Sci 718:72–81 discussion 81–72

  8. 8.

    Berger E, Galdston M, Horwitz S, Jackenthal R, Pruss M (1949) The effect of anoxic anoxia on the human kidney. J Clin Invest 28:648–652

  9. 9.

    Olsen NV (1995) Effect of hypoxaemia on water and sodium homeostatic hormones and renal function. Acta Anaesthesiol Scand Suppl 107:165–170

  10. 10.

    Hohne C, Krebs MO, Boemke W, Arntz E, Kaczmarczyk G (2001) Evidence that the renin decrease during hypoxia is adenosine mediated in conscious dogs. J Appl Physiol 90:1842–1848

  11. 11.

    Hildebrandt W, Ottenbacher A, Schuster M, Swenson ER, Bartsch P (2000) Diuretic effect of hypoxia, hypocapnia, and hyperpnea in humans: relation to hormones and O(2) chemosensitivity. J Appl Physiol 88:599–610

  12. 12.

    Mannix ET, Dowdeswell I, Carlone S, Palange P, Aronoff GR, Farber MO (1990) The effect of oxygen on sodium excretion in hypoxemic patients with chronic obstructive lung disease. Chest 97:840–844

  13. 13.

    MacNee W (1994) Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease. Part two. Am J Respir Crit Care Med 150:1158–1168

  14. 14.

    MacNee W (1994) Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease. Part one. Am J Respir Crit Care Med 150:833–852

  15. 15.

    Farber MO, Roberts LR, Weinberger MH, Robertson GL, Fineberg NS, Manfredi F (1982) Abnormalities of sodium and H2O handling in chronic obstructive lung disease. Arch Intern Med 142:1326–1330

  16. 16.

    Baudouin SV, Bott J, Ward A, Deane C, Moxham J (1992) Short term effect of oxygen on renal haemodynamics in patients with hypoxaemic chronic obstructive airways disease. Thorax 47:550–554

  17. 17.

    Sharkey RA, Mulloy EM, O’Neill SJ (1998) Acute effects of hypoxaemia, hyperoxaemia and hypercapnia on renal blood flow in normal and renal transplant subjects. Eur Respir J 12:653–657

  18. 18.

    Sharkey RA, Mulloy EM, O’Neill SJ (1999) The acute effects of oxygen and carbon dioxide on renal vascular resistance in patients with an acute exacerbation of COPD. Chest 115:1588–1592

  19. 19.

    Howes TQ, Deane CR, Levin GE, Baudouin SV, Moxham J (1995) The effects of oxygen and dopamine on renal and aortic blood flow in chronic obstructive pulmonary disease with hypoxemia and hypercapnia. Am J Respir Crit Care Med 151:378–383

  20. 20.

    Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Ronco C (2005) Acute renal failure in critically ill patients: a multinational, multicenter study. J Am Med Assoc 294:813–818

  21. 21.

    Uchino S, Bellomo R, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Oudemans-van Straaten H, Ronco C, Kellum JA (2007) Continuous renal replacement therapy: a worldwide practice survey: the beginning and ending supportive therapy for the kidney (B.E.S.T. Kidney) investigators. Intensive Care Med 33:1563–1570

  22. 22.

    Darmon M, Schortgen F, Leon R, Brun-Buisson C, Brochard L (2007) Renal effects of different targets for arterial oxygenation during ARDS. Intensive Care Med 33:S99

  23. 23.

    Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R (1994) The American-European consensus conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824

  24. 24.

    Le Gall JR, Lemeshow S, Saulnier F (1993) A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. J Am Med Assoc 270:2957–2963

  25. 25.

    Le Gall JR, Klar J, Lemeshow S, Saulnier F, Alberti C, Artigas A, Teres D (1996) The logistic organ dysfunction system. A new way to assess organ dysfunction in the intensive care unit. ICU scoring group. J Am Med Assoc 276:802–810

  26. 26.

    Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P (2004) Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the acute dialysis quality initiative (ADQI) group. Crit Care 8:R204–R212

  27. 27.

    Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41

  28. 28.

    Malbrain ML, Cheatham ML, Kirkpatrick A, Sugrue M, Parr M, De Waele J, Balogh Z, Leppaniemi A, Olvera C, Ivatury R, D’Amours S, Wendon J, Hillman K, Johansson K, Kolkman K, Wilmer A (2006) Results from the international conference of experts on intra-abdominal hypertension and abdominal compartment syndrome. I. Definitions. Intensive Care Med 32:1722–1732

  29. 29.

    Mostbeck GH, Gossinger HD, Mallek R, Siostrzonek P, Schneider B, Tscholakoff D (1990) Effect of heart rate on Doppler measurements of resistive index in renal arteries. Radiology 175:511–513

  30. 30.

    Hohne C, Boemke W, Schleyer N, Francis RC, Krebs MO, Kaczmarczyk G (2002) Low sodium intake does not impair renal compensation of hypoxia-induced respiratory alkalosis. J Appl Physiol 92:2097–2104

  31. 31.

    Swenson ER, Duncan TB, Goldberg SV, Ramirez G, Ahmad S, Schoene RB (1995) Diuretic effect of acute hypoxia in humans: relationship to hypoxic ventilatory responsiveness and renal hormones. J Appl Physiol 78:377–383

  32. 32.

    Vidiendal Olsen N, Christensen H, Klausen T, Fogh-Andersen N, Plum I, Kanstrup IL, Hansen JM (1998) Effects of hyperventilation and hypocapnic/normocapnic hypoxemia on renal function and lithium clearance in humans. Anesthesiology 89:1389–1400

  33. 33.

    Rose CE Jr, Kimmel DP, Godine RL Jr, Kaiser DL, Carey RM (1983) Synergistic effects of acute hypoxemia and hypercapnic acidosis in conscious dogs. Renal dysfunction and activation of the renin-angiotensin system. Circ Res 53:202–213

  34. 34.

    Bruns FJ (1978) Decrease in renal perfusion, glomerular filtration and sodium excretion by hypoxia in the dog. Proc Soc Exp Biol Med 159:468–472

  35. 35.

    Korner PI (1959) Circulatory adaptations in hypoxia. Physiol Rev 39:687–730

  36. 36.

    Zillig B, Schuler G, Truniger B (1978) Renal function and intrarenal hemodynamics in acutely hypoxic and hypercapnic rats. Kidney Int 14:58–67

  37. 37.

    Corrigan G, Ramaswamy D, Kwon O, Sommer FG, Alfrey EJ, Dafoe DC, Olshen RA, Scandling JD, Myers BD (1999) PAH extraction and estimation of plasma flow in human postischemic acute renal failure. Am J Physiol 277:F312–F318

  38. 38.

    Lauschke A, Teichgraber UK, Frei U, Eckardt KU (2006) ‘Low-dose’ dopamine worsens renal perfusion in patients with acute renal failure. Kidney Int 69:1669–1674

  39. 39.

    Lerolle N, Guerot E, Faisy C, Bornstain C, Diehl JL, Fagon JY (2006) Renal failure in septic shock: predictive value of Doppler-based renal arterial resistive index. Intensive Care Med 32:1553–1559

  40. 40.

    Denton KM, Shweta A, Anderson WP (2002) Preglomerular and postglomerular resistance responses to different levels of sympathetic activation by hypoxia. J Am Soc Nephrol 13:27–34

  41. 41.

    Murdaugh HV Jr, Sieker HO, Manfredi F (1959) Effect of altered intrathoracic pressure on renal hemodynamics, electrolyte excretion and water clearance. J Clin Invest 38:834–842

  42. 42.

    Honig A (1989) Peripheral arterial chemoreceptors and reflex control of sodium and water homeostasis. Am J Physiol 257:R1282–R1302

  43. 43.

    Conti M, Moutereau S, Zater M, Lallali K, Durrbach A, Manivet P, Eschwege P, Loric S (2006) Urinary cystatin C as a specific marker of tubular dysfunction. Clin Chem Lab Med 44:288–291

  44. 44.

    Whitehouse T, Stotz M, Taylor V, Stidwill R, Singer M (2006) Tissue oxygen and hemodynamics in renal medulla, cortex, and corticomedullary junction during hemorrhage-reperfusion. Am J Physiol Renal Physiol 291:F647–F653

Download references


The authors are greatly indebted to Prof. Gerard Friedlander (Hopital Européen George Pompidou) for his helpful comments. The authors thank A. Wolfe MD for helping with the writing of this manuscript.

Author information

Correspondence to Michael Darmon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 330 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Darmon, M., Schortgen, F., Leon, R. et al. Impact of mild hypoxemia on renal function and renal resistive index during mechanical ventilation. Intensive Care Med 35, 1031–1038 (2009).

Download citation


  • Intensive care unit
  • Respiratory distress syndrome, adult
  • Urinary tract physiology
  • Renal failure, acute
  • Doppler ultrasonography