Intensive Care Medicine

, 35:678 | Cite as

Increased circulating regulatory T cells (CD4+CD25+CD127) contribute to lymphocyte anergy in septic shock patients

  • Fabienne Venet
  • Chun-Shiang Chung
  • Hakim Kherouf
  • Anne Geeraert
  • Chistophe Malcus
  • Françoise Poitevin
  • Julien Bohé
  • Alain Lepape
  • Alfred Ayala
  • Guillaume Monneret



Sepsis syndrome represents the leading cause of death in intensive care unit. Patients present features consistent with a decline in immune responsiveness potentially contributing to mortality. We investigated whether CD4+CD25+ regulatory T cells (Treg) participate in the induction of lymphocyte anergy after sepsis.


Observational study in septic shock patients and experimental study in mice.


We took advantage of the recently described flow cytometric gating strategy using the measurement of CD25 and CD127 expressions for monitoring Treg (CD4+CD25+CD127Foxp3+). In patients the increased circulating Treg percentage significantly correlated with a decreased lympho-proliferative response. In a murine model of sepsis mimicking these observations, the ex vivo downregulation of Foxp3 expression using siRNA was associated with a restoration of this response.


The relative increase in circulating Treg might play a role in lymphocyte anergy described after septic shock and represent a standardizable surrogate marker of declining proliferative capacity after sepsis.


Septic shock Anergy CD4+CD25+ CD127 Regulatory T cells Foxp3 



Aspects of the work presented here were supported by funds from the Hospices Civils de Lyon (to G.M.) and a grant from the NIH R01 GM46354 (to A.A.). The study was conducted thanks to the logistic support of Centre d’Investigation Clinique (CIC 201) of INSERM and Hospices Civils de Lyon. None of the authors has any potential financial conflict of interest related to this manuscript.

Supplementary material

134_2008_1337_MOESM1_ESM.doc (64 kb)
Electronic supplementary material (DOC 64 kb)


  1. 1.
    Brun-Buisson C, Meshaka P, Pinton P, Valley P, EPISEPSIS Study group (2004) EPISEPSIS: a reappraisal of the epidemiology and outcome of severe sepsis in French intensive care units. Intensive Care Med 30:580–588PubMedCrossRefGoogle Scholar
  2. 2.
    Brun-Buisson C, Roudot-Thoraval F, Girou E, Grenier-Sennelier C, Durand-Zaleski I (2003) The costs of septic syndromes in the intensive care unit and influence of hospital-acquired sepsis. Intensive Care Med 29:1464–1471PubMedCrossRefGoogle Scholar
  3. 3.
    Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310PubMedCrossRefGoogle Scholar
  4. 4.
    Hotchkiss RS, Karl IE (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348:138–150PubMedCrossRefGoogle Scholar
  5. 5.
    Monneret G, Venet F, Pachot A, Lepape A (2008) Monitoring immune dysfunctions in the septic patient: a new skin for the old ceremony. Mol Med 14:64–78PubMedCrossRefGoogle Scholar
  6. 6.
    Christou NV, Meakins JL, Gordon J, Yee J, Hassan-Zahraee M, Nohr CW, Shizgal HM, MacLean LD (1995) The delayed hypersensitivity response and host resistance in surgical patients. 20 years later. Ann Surg 222:534–546PubMedCrossRefGoogle Scholar
  7. 7.
    Rode HN, Christou NV, Bubenik O, Superina R, Gordon J, Meakins JL, MacLean LD (1982) Lymphocyte function in anergic patients. Clin Exp Immunol 47:155–161PubMedGoogle Scholar
  8. 8.
    Heidecke CD, Hensler T, Weighardt H, Zantl N, Wagner H, Siewert JR, Holzmann B (1999) Selective defects of T lymphocyte function in patients with lethal intraabdominal infection. Am J Surg 178:288–292PubMedCrossRefGoogle Scholar
  9. 9.
    Roth G, Moser B, Krenn C, Brunner M, Haisjackl M, Almer G, Gerlitz S, Wolner E, Boltz-Nitulescu G, Ankersmit HJ (2003) Susceptibility to programmed cell death in T-lymphocytes of septic patients: a mechanism of lymphopenia and Th2 predominance. Biochem Biophys Res Comm 308:840–846PubMedCrossRefGoogle Scholar
  10. 10.
    Venet F, Chung CS, Monneret G, Huang X, Horner B, Garber M, Ayala A (2007) Regulatory T cell populations in sepsis and trauma. J Leukoc Biol 83:523–535PubMedCrossRefGoogle Scholar
  11. 11.
    Baecher-Allan C, Hafler DA (2006) Human regulatory T cells and their role in autoimmune disease. Immunol Rev 212:203–216PubMedCrossRefGoogle Scholar
  12. 12.
    Belkaid Y (2007) Regulatory T cells and infection: a dangerous necessity. Nat Rev Immunol 7:875–888PubMedCrossRefGoogle Scholar
  13. 13.
    Venet F, Pachot A, Debard AL, Bohe J, Bienvenu J, Lepape A, Powell WS, Monneret G (2006) Human CD4+CD25+ regulatory T lymphocytes inhibit lipopolysaccharide-induced monocyte survival through a Fas/Fas ligand-dependent mechanism. J Immunol 177:6540–6547PubMedGoogle Scholar
  14. 14.
    Lewkowicz P, Lewkowicz N, Sasiak A, Tchórzewski H (2006) Lipopolysaccharide-activated CD4+CD25+ T regulatory cells inhibit neutrophil function and promote their apoptosis and death. J Immunol 177:7155–7163PubMedGoogle Scholar
  15. 15.
    Seddiki N, Santner-Nanan B, Martinson J, Zaunders J, Sasson S, Landay A, Solomon M, Selby W, Alexander SI, Nanan R, Kelleher A, Fazekas de St Groth B (2006) Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med 203:1693–1700PubMedCrossRefGoogle Scholar
  16. 16.
    Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA, Kapranov P, Gingeras TR, Fazekas de St Groth B, Clayberger C, Soper DM, Ziegler SF, Bluestone JA (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203:1701–1711PubMedCrossRefGoogle Scholar
  17. 17.
    Venet F, Chung CS, Lepape A, Ayala A, Monneret G (2008) Anergy in septic patients: correlating the increased percentage of circulating CD4+CD25+CD127 regulatory T cells with a decline in lymphocyte proliferation. FASEB J 22:848–849Google Scholar
  18. 18.
    Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 101:1644–1655PubMedCrossRefGoogle Scholar
  19. 19.
    Monneret G, Lepape A, Voirin N, Bohé J, Venet F, Debard AL, Thizy H, Bienvenu J, Gueyffier F, Vanhems P (2006) Persisting low monocyte human leukocyte antigen-DR expression predicts mortality in septic shock. Intensive Care Med 32:1175–1183PubMedCrossRefGoogle Scholar
  20. 20.
    Campbell DJ, Ziegler SF (2007) FOXP3 modifies the phenotypic and functional properties of regulatory T cells. Nat Rev Immunol 7:305–310PubMedCrossRefGoogle Scholar
  21. 21.
    Banham AH (2006) Cell-surface IL-7 receptor expression facilitates the purification of FOXP3(+) regulatory T cells. Trends Immunol 27:541–544PubMedCrossRefGoogle Scholar
  22. 22.
    Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, Fehervari Z, Shimizu J, Takahashi T, Nomura T (2006) Foxp3+CD25+CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 212:8–27PubMedCrossRefGoogle Scholar
  23. 23.
    Meakins JL, Pietsch JB, Bubenick O, Kelly R, Rode H, Gordon J, MacLean LD (1977) Delayed hypersensitivity: indicator of acquired failure of host defenses in sepsis and trauma. Ann Surg 186:241–250PubMedCrossRefGoogle Scholar
  24. 24.
    Monneret G, Debard AL, Venet F, Bohe J, Hequet O, Bienvenu J, Lepape A (2003) Marked elevation of human circulating CD4+CD25+ regulatory T cells in sepsis-induced immunoparalysis. Crit Care Med 31:2068–2071PubMedCrossRefGoogle Scholar
  25. 25.
    Venet F, Pachot A, Debard AL, Bohé J, Bienvenu J, Lepape A, Monneret G (2004) Increased percentage of CD4+CD25+ regulatory T cells during septic shock is due to the decrease of CD4+CD25 lymphocytes. Crit Care Med 32:2329–2331PubMedGoogle Scholar
  26. 26.
    Banz A, Pontoux C, Papiernik M (2002) Modulation of Fas-dependent apoptosis: a dynamic process controlling both the persistence and death of regulatory T cells and effector T cells. J Immunol 169:750–757PubMedGoogle Scholar
  27. 27.
    Chen X, Murakami T, Oppenheim JJ, Howard OM (2004) Differential response of murine CD4+CD25+ and CD4+CD25 T cells to dexamethasone-induced cell death. Eur J Immunol 34:859–869PubMedCrossRefGoogle Scholar
  28. 28.
    MacConmara MP, Maung AA, Fujimi S, McKenna AM, Delisle A, Lapchak PH, Rogers S, Lederer JA, Mannick JA (2006) Increased CD4+CD25+ T regulatory cell activity in trauma patients depresses protective Th1 immunity. Ann Surg 244:514–523PubMedGoogle Scholar
  29. 29.
    Scumpia PO, Delano MJ, Kelly KM, O’Malley KA, Efron PA, McAuliffe PF, Brusko T, Ungaro R, Barker T, Wynn JL, Atkinson MA, Reeves WH, Salzler MJ, Moldawer LL (2006) Increased natural CD4+CD25+ regulatory T cells and their suppressor activity do not contribute to mortality in murine polymicrobial sepsis. J Immunol 177:7943–7949PubMedGoogle Scholar
  30. 30.
    Offner H, Subramanian S, Parker SM, Wang C, Afentoulis ME, Lewis A, Vandenbark AA, Hurn PD (2006) Splenic atrophy in experimental stroke is accompanied by increased regulatory T cells and circulating macrophages. J Immunol 176:6523–6531PubMedGoogle Scholar
  31. 31.
    Chen X, Bäumel M, Männel DN, Howard OM, Oppenheim JJ (2007) Interaction of TNF with TNF receptor type 2 promotes expansion and function of mouse CD4+CD25+ T regulatory cells. J Immunol 179:154–161PubMedGoogle Scholar
  32. 32.
    Wisnoski N, Chung CS, Chen Y, Huang X, Ayala A (2006) The contribution of CD4+CD25+ T-regulatory-cells to immune suppression in sepsis. Shock 27:251–257CrossRefGoogle Scholar
  33. 33.
    Hensler T, Hecker H, Heeg K, Heidecke CD, Bartels H, Barthlen W, Wagner H, Siewert JR, Holzmann B (1997) Distinct mechanisms of immunosuppression as a consequence of major surgery. Infect Immun 65:2283–2291PubMedGoogle Scholar
  34. 34.
    Puyana JC, Pellegrini JD, De AK, Kodys K, Silva WE, Miller CL (1998) Both T-helper-1- and T-helper-2-type lymphokines are depressed in posttrauma anergy. J Trauma 44:1037–1045PubMedCrossRefGoogle Scholar
  35. 35.
    Pellegrini JD, De AK, Kodys K, Puyana JC, Furse RK, Miller-Graziano C (2000) Relationships between T lymphocyte apoptosis and anergy following trauma. J Surg Res 88:200–206PubMedCrossRefGoogle Scholar
  36. 36.
    Bandyopadhyay G, De A, Laudanski K, Li F, Lentz C, Bankey P, Miller-Graziano C (2007) Negative signaling contributes to T-cell anergy in trauma patients. Crit Care Med 35:794–801PubMedCrossRefGoogle Scholar
  37. 37.
    Lederer JA, Rodrick ML, Mannick JA (1999) The effects of injury on the adaptive immune response. Shock 11:153–159PubMedCrossRefGoogle Scholar
  38. 38.
    Manjuck J, Saha DC, Astiz M, Eales LJ, Rackow EC (2000) Decreased response to recall antigens is associated with depressed costimulatory receptor in septic critically ill patients. J Lab Clin Med 135:153–160PubMedCrossRefGoogle Scholar
  39. 39.
    De AK, Kodys KM, Pellegrini J, Yeh B, Furse RK, Bankey P, Miller-Graziano CL (2000) Induction of global anergy rather than inhibitory Th2 lymphokines mediates posttrauma T cell immunodepression. Clin Immunol 96:52–66PubMedCrossRefGoogle Scholar
  40. 40.
    Hubbard WJ, Choudhry M, Schwacha MG, Kerby JD, Rue LW 3rd, Bland KI, Chaudry IH (2005) Cecal ligation and puncture. Shock 24S1:52–57Google Scholar
  41. 41.
    Ziegler SF (2006) FOXP3: of mice and men. Annu Rev Immunol 24:209–226PubMedCrossRefGoogle Scholar
  42. 42.
    Baecher-Allan C, Wolf E, Hafler DA (2006) MHC class II expression identifies functionally distinct human regulatory T cells. J Immunol 176:4622–4631PubMedGoogle Scholar
  43. 43.
    Baecher-Allan C, Viglietta V, Hafler DA (2004) Human CD4+CD25+ regulatory T cells. Semin Immunol 16:89–98PubMedCrossRefGoogle Scholar
  44. 44.
    Tree TI, Roep BO, Peakman M (2006) A mini meta-analysis of studies on CD4+CD25+ T cells in human type 1 diabetes: report of the Immunology of Diabetes Society T Cell Workshop. Ann N Y Acad Sci 1079:9–18PubMedCrossRefGoogle Scholar
  45. 45.
    Codarri L, Vallotton L, Ciuffreda D, Venetz JP, Garcia M, Hadaya K, Buhler L, Rotman S, Pascual M, Pantaleo G (2007) Expansion and tissue infiltration of an allospecific CD4+CD25+CD45RO+IL-7Ralphahigh cell population in solid organ transplant recipients. J Exp Med 207:1533–1541CrossRefGoogle Scholar
  46. 46.
    Ndhlovu LC, Loo CP, Spotts G, Nixon DF, Hecht FM (2008) FOXP3 expressing CD127lo CD4+ T cells inversely correlates with CD38+CD8+ T cell activation levels in primary HIV-1 infection. J Leukoc Biol 83:254–262PubMedCrossRefGoogle Scholar
  47. 47.
    Hoffmann HJ, Malling TM, Topcu A, Ryder LP, Nielsen KR, Varming K, Dahl R, Omland O, Sigsgaard T (2007) CD4dimCD25bright Treg cell frequencies above a standardized gating threshold are similar in asthmatics and controls. Cytometry A 71:371–378PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Fabienne Venet
    • 1
  • Chun-Shiang Chung
    • 1
  • Hakim Kherouf
    • 2
  • Anne Geeraert
    • 2
  • Chistophe Malcus
    • 2
  • Françoise Poitevin
    • 2
  • Julien Bohé
    • 3
  • Alain Lepape
    • 3
  • Alfred Ayala
    • 1
  • Guillaume Monneret
    • 2
  1. 1.Division of Surgical Research, Rhode Island HospitalBrown UniversityProvidenceUSA
  2. 2.Flow Cytometry Unit, Immunology LaboratoryHôpital E. Herriot, Hospices Civils de LyonLyon Cedex 03France
  3. 3.Intensive Care Units, Centre Hospitalier Lyon-SudHospices Civils de LyonLyonFrance

Personalised recommendations