Intensive Care Medicine

, Volume 35, Issue 2, pp 198–205 | Cite as

Interactions between respiration and systemic hemodynamics. Part II: practical implications in critical care

Review

Abstract

In Part I of this review, we have covered basic concepts regarding cardiorespiratory interactions. Here, we put this theoretical framework to practical use. We describe mechanisms underlying Kussmaul’s sign and pulsus paradoxus. We review the literature on the use of respiratory variations of blood pressure to evaluate volume status. We show the possibilities of attaining the latter aim by investigating with ultrasonography how the geometry of great veins fluctuates with respiration. We provide a Guytonian analysis of the effects of PEEP on cardiac output. We terminate with some remarks on the potential of positive pressure breathing to induce acute cor pulmonale, and on the cardiovascular mechanisms that at times may underly the failure to wean a patient from the ventilator.

References

  1. 1.
    O’Rourke RA, Silverman ME, Schlant RC (1994) Chap 10: general examination of the patient. In: Schlant RC, Wayne Alexander R (eds) The heart, arteries and veins. McGraw-Hill, New York, p 240Google Scholar
  2. 2.
    Fessler HE (1997) Heart-lung interactions: applications in the critically ill (review). Eur Respir J 10:226–237PubMedCrossRefGoogle Scholar
  3. 3.
    Takata M, Beloucif S, Shimada M, Robotham JL (1992) Superior and inferior vena caval flows during respiration: pathogenesis of Kussmaul’s sign. Am J Physiol 262:H763–H770PubMedGoogle Scholar
  4. 4.
    Scharf SM (1992) Cardiopulmonary interactions. In: Scharf SM (ed) Cardiopulmonary physiology in critical care. Marcel Dekker, New York, pp 333–355Google Scholar
  5. 5.
    Wise RA (1994) Historical perspectives on the mechanical interactions of respiration and circulation. In: Perret C (ed) Les interactions cardio-pulmonaires. Arnette, Paris, pp 3–15Google Scholar
  6. 6.
    Reddy PS, Curtiss EI (1990) Cardiac tamponade. Cardiol Clin 8:627–637PubMedGoogle Scholar
  7. 7.
    Jardin F, Farcot JC, Boisante L, Prost JF, Gueret P, Bourdarias JP (1982) Mechanism of paradoxic pulse in bronchial asthma. Circulation 66:887–894PubMedGoogle Scholar
  8. 8.
    Blaustein AS, Risser TA, Weiss JW, Parker JA, Holman BL, McFadden ER (1986) Mechanisms of pulsus paradoxus during resistive respiratory loading and asthma. J Am Coll Cardiol 8:529–536PubMedCrossRefGoogle Scholar
  9. 9.
    Vaska K, Wann LS, Sagar K, Klopfenstein HS (1992) Pleural effusion as a cause of right ventricular diastolic collapse. Circulation 86:609–617PubMedGoogle Scholar
  10. 10.
    Silverman HJ, Haponik EF (1986) Pulsus paradoxus in pulmonary embolism: reversal with thrombolytic therapy. Crit Care Med 14:165–166PubMedCrossRefGoogle Scholar
  11. 11.
    Ward GL, Heiselman DE, White LJ (1992) Pulsus paradoxus in anaphylactic shock due to urokinase administration. Chest 101:589PubMedCrossRefGoogle Scholar
  12. 12.
    Hooper TL, Lawson RA (1986) Volvulus of the stomach—an unusual cause of pulsus paradoxus. Postgrad Med J 62:377–379PubMedCrossRefGoogle Scholar
  13. 13.
    Baum VC, Tarnoff H, Hoffman JI (1980) Pulsus paradoxus in a patient with tricuspid atresia and hypoplastic right heart. Circulation 62:651–652PubMedGoogle Scholar
  14. 14.
    Dornhorst AC, Howard P, Leathart GL (1952) Pulsus paradoxus. Lancet 1:746–748PubMedCrossRefGoogle Scholar
  15. 15.
    Shabetai R, Fowler NO, Guntheroth WG (1970) The hemodynamics of cardiac tamponade and constrictive pericarditis. Am J Cardiol 26:480–489PubMedCrossRefGoogle Scholar
  16. 16.
    Winer HE, Kronzon I (1979) Absence of paradoxical pulse in patients with cardiac tamponade and atrial septal defects. Am J Cardiol 44:378–380PubMedCrossRefGoogle Scholar
  17. 17.
    Hoit BD, Gabel M, Fowler NO (1990) Cardiac tamponade in left ventricular dysfunction. Circulation 82:1370–1376PubMedGoogle Scholar
  18. 18.
    Diebel L, Wilson RF, Heins J, Larky H, Warsow K, Wilson S (1994) End-diastolic volume versus pulmonary artery wedge pressure in evaluating cardiac preload in trauma patients. J Trauma 37:950–955PubMedCrossRefGoogle Scholar
  19. 19.
    Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P (1998) Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89:1313–1321PubMedCrossRefGoogle Scholar
  20. 20.
    Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky MR, Teboul JL (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–138PubMedGoogle Scholar
  21. 21.
    Pinsky MR (2003) Pulmonary artery occlusion pressure. Intensive Care Med 29:19–22PubMedCrossRefGoogle Scholar
  22. 22.
    Hoyt JD, Leatherman JW (1997) Interpretation of the pulmonary artery occlusion pressure in mechanically ventilated patients with large respiratory excursions in intrathoracic pressure. Intensive Care Med 23:1125–1131PubMedCrossRefGoogle Scholar
  23. 23.
    Qureshi AS, Shapiro RS, Leatherman JW (2007) Use of bladder pressure to correct for the effect of expiratory muscle activity on central venous pressure. Intensive Care Med 33:1907–1912PubMedCrossRefGoogle Scholar
  24. 24.
    Feihl F, Perret C (1995) Right heart catheterization at bedside: a note of cautious optimism (comment). Intensive Care Med 21:296–298PubMedCrossRefGoogle Scholar
  25. 25.
    Monnet X, Rienzo M, Osman D, Anguel N, Richard C, Pinsky MR, Teboul JL (2006) Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med 34:1402–1407PubMedCrossRefGoogle Scholar
  26. 26.
    De Backer D, Pinsky MR (2007) Can one predict fluid responsiveness in spontaneously breathing patients? Intensive Care Med 33:1111–1113PubMedCrossRefGoogle Scholar
  27. 27.
    Monnet X, Teboul JL (2008) Passive leg raising. Intensive Care Med 34:659–663PubMedCrossRefGoogle Scholar
  28. 28.
    Brower R, Wise RA, Hassapoyannes C, Bromberger-Barnea B, Permutt S (1985) Effect of lung inflation on lung blood volume and pulmonary venous flow. J Appl Physiol 58:954–963PubMedCrossRefGoogle Scholar
  29. 29.
    Jardin F, Farcot JC, Gueret P, Prost JF, Ozier Y, Bourdarias JP (1983) Cyclic changes in arterial pulse during respiratory support. Circulation 68:266–274PubMedGoogle Scholar
  30. 30.
    Vieillard-Baron A, Chergui K, Augarde R, Prin S, Page B, Beauchet A, Jardin F (2003) Cyclic changes in arterial pulse during respiratory support revisited by Doppler echocardiography. Am J Respir Crit Care Med 168:671–676PubMedCrossRefGoogle Scholar
  31. 31.
    Perel A, Pizov R, Cotev S (1987) Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology 67:498–502PubMedCrossRefGoogle Scholar
  32. 32.
    Pizov R, Ya’ari Y, Perel A (1989) The arterial pressure waveform during acute ventricular failure and synchronized external chest compression. Anesth Analg 68:150–156PubMedGoogle Scholar
  33. 33.
    Pizov R, Cohen M, Weiss Y, Segal E, Cotev S, Perel A (1996) Positive end-expiratory pressure-induced hemodynamic changes are reflected in the arterial pressure waveform. Crit Care Med 24:1381–1387PubMedCrossRefGoogle Scholar
  34. 34.
    Coriat P, Vrillon M, Perel A, Baron JF, Le Bret F, Saada M, Viars P (1994) A comparison of systolic blood pressure variations and echocardiographic estimates of end-diastolic left ventricular size in patients after aortic surgery (see comments). Anesth Analg 78:46–53PubMedCrossRefGoogle Scholar
  35. 35.
    Michard F, Chemla D, Richard C, Wysocki M, Pinsky MR, Lecarpentier Y, Teboul JL (1999) Clinical use of respiratory changes in arterial pulse pressure to monitor the hemodynamic effects of PEEP. Am J Respir Crit Care Med 159:935–939PubMedGoogle Scholar
  36. 36.
    Feissel M, Teboul JL, Merlani P, Badie J, Faller JP, Bendjelid K (2007) Plethysmographic dynamic indices predict fluid responsiveness in septic ventilated patients. Intensive Care Med 33:993–999PubMedCrossRefGoogle Scholar
  37. 37.
    Duperret S, Lhuillier F, Piriou V, Vivier E, Metton O, Branche P, Annat G, Bendjelid K, Viale JP (2007) Increased intra-abdominal pressure affects respiratory variations in arterial pressure in normovolaemic and hypovolaemic mechanically ventilated healthy pigs. Intensive Care Med 33:163–171PubMedCrossRefGoogle Scholar
  38. 38.
    Szold A, Pizov R, Segal E, Perel A (1989) The effect of tidal volume and intravascular volume state on systolic pressure variation in ventilated dogs. Intensive Care Med 15:368–371PubMedCrossRefGoogle Scholar
  39. 39.
    Reuter DA, Bayerlein J, Goepfert MS, Weis FC, Kilger E, Lamm P, Goetz AE (2003) Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients. Intensive Care Med 29:476–480PubMedGoogle Scholar
  40. 40.
    Renner J, Cavus E, Meybohm P, Tonner P, Steinfath M, Scholz J, Lutter G, Bein B (2007) Stroke volume variation during hemorrhage and after fluid loading: impact of different tidal volumes. Acta Anaesthesiol Scand 51:538–544PubMedCrossRefGoogle Scholar
  41. 41.
    Preisman S, Kogan S, Berkenstadt H, Perel A (2005) Predicting fluid responsiveness in patients undergoing cardiac surgery: functional haemodynamic parameters including the Respiratory Systolic Variation Test and static preload indicators. Br J Anaesth 95:746–755PubMedCrossRefGoogle Scholar
  42. 42.
    Soubrier S, Saulnier F, Hubert H, Delour P, Lenci H, Onimus T, Nseir S, Durocher A (2007) Can dynamic indicators help the prediction of fluid responsiveness in spontaneously breathing critically ill patients? Intensive Care Med 33:1117–1124PubMedCrossRefGoogle Scholar
  43. 43.
    Magder S, Georgiadis G, Cheong T (1992) Respiratory variations in right atrial pressure predict the response to fluid challenge. J Crit Care 7:76–85CrossRefGoogle Scholar
  44. 44.
    Charron C, Caille V, Jardin F, Vieillard-Baron A (2006) Echocardiographic measurement of fluid responsiveness. Curr Opin Crit Care 12:249–254PubMedCrossRefGoogle Scholar
  45. 45.
    Mandelbaum A, Ritz E (1996) Vena cava diameter measurement for estimation of dry weight in haemodialysis patients. Nephrol Dial Transplant 11(Suppl 2):24–27PubMedGoogle Scholar
  46. 46.
    Haciomeroglu P, Ozkaya O, Gunal N, Baysal K (2007) Venous collapsibility index changes in children on dialysis. Nephrology (Carlton) 12:135–139CrossRefGoogle Scholar
  47. 47.
    Feissel M, Michard F, Faller JP, Teboul JL (2004) The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med 30:1834–1837PubMedCrossRefGoogle Scholar
  48. 48.
    Barbier C, Loubieres Y, Schmit C, Hayon J, Ricome JL, Jardin F, Vieillard-Baron A (2004) Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med 30:1740–1746PubMedGoogle Scholar
  49. 49.
    Vieillard-Baron A, Augarde R, Prin S, Page B, Beauchet A, Jardin F (2001) Influence of superior vena caval zone condition on cyclic changes in right ventricular outflow during respiratory support. Anesthesiology 95:1083–1088PubMedCrossRefGoogle Scholar
  50. 50.
    Vieillard-Baron A, Chergui K, Rabiller A, Peyrouset O, Page B, Beauchet A, Jardin F (2004) Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med 30:1734–1739PubMedGoogle Scholar
  51. 51.
    Fessler HE, Brower RG, Wise RA, Permutt S (1992) Effects of positive end-expiratory pressure on the canine venous return curve. Am Rev Respir Dis 146:4–10PubMedGoogle Scholar
  52. 52.
    Guyton AC, Jones CE, Coleman TG (1973) Circulatory physiology: cardiac output and its regulation. W. B. Saunders Company, PhiladelphiaGoogle Scholar
  53. 53.
    Guyton AC (1955) Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev 35:123–129PubMedGoogle Scholar
  54. 54.
    Qvist J, Pontoppidan H, Wilson RS, Lowenstein E, Laver MB (1975) Hemodynamic response to mechanical ventilation with PEEP: the effect of hypervolemia. Anesthesiology 42:45–55PubMedCrossRefGoogle Scholar
  55. 55.
    Grace MP, Greenbaum DM (1982) Cardiac performance in response to PEEP in patients with cardiac dysfunction. Crit Care Med 10:358–360PubMedCrossRefGoogle Scholar
  56. 56.
    Bradley TD, Holloway RM, McLaughlin PR, Ross BL, Walters J, Liu PP (1992) Cardiac output response to continuous positive airway pressure in congestive heart failure. Am Rev Respir Dis 145(2 Pt 1):377–382PubMedGoogle Scholar
  57. 57.
    Rasanen J, Heikkila J, Downs J, Nikki P, Vaisanen I, Viitanen A (1985) Continuous positive airway pressure by face mask in acute cardiogenic pulmonary edema. Am J Cardiol 55:296–300PubMedCrossRefGoogle Scholar
  58. 58.
    Naughton MT, Rahman MA, Hara K, Floras JS, Bradley TD (1995) Effect of continuous positive airway pressure on intrathoracic and left ventricular transmural pressures in patients with congestive heart failure. Circulation 91:1725–1731PubMedGoogle Scholar
  59. 59.
    Lenique F, Habis M, Lofaso F, Dubois-Rande JL, Harf A, Brochard L (1997) Ventilatory and hemodynamic effects of continuous positive airway pressure in left heart failure. Am J Respir Crit Care Med 155:500–505PubMedGoogle Scholar
  60. 60.
    Huberfeld SI, Genovese J, Tarasiuk A, Scharf SM (1995) Effect of CPAP on pericardial pressure and respiratory system mechanics in pigs. Am J Respir Crit Care Med 152:142–147PubMedGoogle Scholar
  61. 61.
    Pinsky MR, Summer WR, Wise RA, Permutt S, Bromberger-Barnea B (1983) Augmentation of cardiac function by elevation of intrathoracic pressure. J Appl Physiol 54:950–955PubMedGoogle Scholar
  62. 62.
    Rasanen J, Vaisanen IT, Heikkila J, Nikki P (1985) Acute myocardial infarction complicated by left ventricular dysfunction and respiratory failure. The effects of continuous positive airway pressure. Chest 87:158–162PubMedCrossRefGoogle Scholar
  63. 63.
    Genovese J, Huberfeld S, Tarasiuk A, Moskowitz M, Scharf SM (1995) Effects of CPAP on cardiac output in pigs with pacing-induced congestive heart failure. Am J Respir Crit Care Med 152:1847–1853PubMedGoogle Scholar
  64. 64.
    Mehta S, Liu PP, Fitzgerald FS, Allidina YK, Douglas Bradley T (2000) Effects of continuous positive airway pressure on cardiac volumes in patients with ischemic and dilated cardiomyopathy. Am J Respir Crit Care Med 161:128–134PubMedGoogle Scholar
  65. 65.
    Scharf SM (2001) Ventilatory support in the failing heart. In: Scharf SM, Pinsky MR, Magder S (eds) Respiratory-circulatory interactions in health and disease. Marcel Dekker, New York, pp 519–550Google Scholar
  66. 66.
    Jardin F, Delorme G, Hardy A, Auvert B, Beauchet A, Bourdarias JP (1990) Reevaluation of hemodynamic consequences of positive pressure ventilation: emphasis on cyclic right ventricular afterloading by mechanical lung inflation. Anesthesiology 72:966–970PubMedCrossRefGoogle Scholar
  67. 67.
    Vieillard-Baron A, Loubieres Y, Schmitt JM, Page B, Dubourg O, Jardin F (1999) Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol 87:1644–1650PubMedGoogle Scholar
  68. 68.
    Jardin F, Vieillard-Baron A (2007) Is there a safe plateau pressure in ARDS? The right heart only knows. Intensive Care Med 33:444–447PubMedCrossRefGoogle Scholar
  69. 69.
    The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 342:1301–1308CrossRefGoogle Scholar
  70. 70.
    Pinsky MR (2000) Breathing as exercise: the cardiovascular response to weaning from mechanical ventilation (comment). Intensive Care Med 26:1164–1166PubMedCrossRefGoogle Scholar
  71. 71.
    Hurford WE, Lynch KE, Strauss HW, Lowenstein E, Zapol WM (1991) Myocardial perfusion as assessed by thallium–201 scintigraphy during the discontinuation of mechanical ventilation in ventilator-dependent patients. Anesthesiology 74:1007–1016PubMedCrossRefGoogle Scholar
  72. 72.
    Lemaire F, Teboul JL, Cinotti L, Giotto G, Abrouk F, Steg G, Macquin-Mavier I, Zapol WM (1988) Acute left ventricular dysfunction during unsuccessful weaning from mechanical ventilation. Anesthesiology 69:171–179PubMedCrossRefGoogle Scholar
  73. 73.
    Jubran A, Mathru M, Dries D, Tobin MJ (1998) Continuous recordings of mixed venous oxygen saturation during weaning from mechanical ventilation and the ramifications thereof. Am J Respir Crit Care Med 158:1763–1769PubMedGoogle Scholar
  74. 74.
    Boles JM, Bion J, Connors A, Herridge M, Marsh B, Melot C, Pearl R, Silverman H, Stanchina M, Vieillard-Baron A, Welte T (2007) Weaning from mechanical ventilation. Eur Respir J 29:1033–1056PubMedCrossRefGoogle Scholar
  75. 75.
    Thompson RB, McVeigh ER (2006) Cardiorespiratory-resolved magnetic resonance imaging: measuring respiratory modulation of cardiac function. Magn Reson Med 56:1301–1310PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Division of Clinical PathophysiologyUniversity Hospital (CHUV) and Lausanne University (UNIL)LausanneSwitzerland
  2. 2.Medical Intensive Care Unit, Regions Hospital Pulmonary and Critical Care DivisionRegions HospitalSt PaulUSA
  3. 3.Division de Physiopathologie CliniqueLausanneSwitzerland

Personalised recommendations