Intensive Care Medicine

, 34:2157 | Cite as

The risk associated with hyperoncotic colloids in patients with shock

  • Frédérique SchortgenEmail author
  • Emmanuelle Girou
  • Nicolas Deye
  • Laurent Brochard
  • for the CRYCO Study Group



Crystalloids, artificial and natural colloids have been opposed as representing different strategies for shock resuscitation, but it may be relevant to distinguish fluids based on their oncotic characteristics. This study assessed the risk of renal adverse events in patients with shock resuscitated using hypooncotic colloids, artificial hyperoncotic colloids, hyperoncotic albumin or crystalloids, according to physician’s choice.

Participants and setting

International prospective cohort study including 1,013 ICU patients needing fluid resuscitation for shock. Patients suffering from cirrhosis or receiving plasma were excluded.

Measurements and results

Influence of different types of colloids and crystalloids on the occurrence of renal events (twofold increase in creatinine or need for dialysis) and mortality was assessed using multivariate analyses and propensity score. Statistical adjustment was based on severity at the time of resuscitation, risks factor for renal failure, and on variables influencing physicians’ preferences regarding fluids. A renal event occurred in 17% of patients. After adjustment on potential confounding factors and on propensity score for the use of hyperoncotic colloids, the use of artificial hyperoncotic colloids [OR: 2.48 (1.24–4.97)] and hyperoncotic albumin [OR: 5.99 (2.75–13.08)] was significantly associated with occurrence of renal event. Overall ICU mortality was 27.1%. The use of hyperoncotic albumin was associated with an increased risk of ICU death [OR: 2.79 (1.42–5.47)].


This study suggests that harmful effects on renal function and outcome of hyperoncotic colloids may exist. Although an improper usage of these compounds and confounding factors cannot be ruled out, their use should be regarded with caution, especially because suitable alternatives exist.


Fluids resuscitation Renal failure Crystalloids Colloids Albumin 



We thank the European Society of Intensive Care Medicine and the French Society of Intensive Care Medicine (Société de Réanimation de Langue Française) for providing the databases used to identify the study participants, Sophie Touati (Medical Intensive Care Unit, Henri Mondor Hospital, Créteil-France) for her secretarial assistance throughout the CRYCO study, and Gil Fraqueiro (Medical Intensive Care Unit, Henri Mondor Hospital Créteil-France) for his help in verifying the accuracy of data in the case-report forms. This study was supported by grant Projet Hospitalier de Recherche Clinique AOM00120 from the Assistance Publique-Hôpitaux de Paris (Paris Teaching Hospital Network, a nonprofit publicly funded organization).

Supplementary material

134_2008_1225_MOESM1_ESM.doc (128 kb)
Electronic supplementary material (DOC 128 kb)


  1. 1.
    Schortgen F, Bastugi-Garin S, Deye N, Brochard L (2004) Impact of fluid choice on renal function in critically ill patients with shock. Intensive Care Med 30(suppl 1):S149 (abstract)Google Scholar
  2. 2.
    Roberts I, Alderson P, Bunn F, Chinnock P, Ker K, Schierhout G (2004) Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev:CD000567Google Scholar
  3. 3.
    Schortgen F, Deye N, Brochard L (2004) Preferred plasma volume expanders for critically ill patients: results of an international survey. Intensive Care Med 30:2222–2229PubMedCrossRefGoogle Scholar
  4. 4.
    American Thoracic Society (2004) Evidence-based colloid use in the critically ill: American Thoracic Society Consensus Statement. Am J Respir Crit Care Med 170:1247–1259CrossRefGoogle Scholar
  5. 5.
    Moran M, Kapsner C (1987) Acute renal failure associated with elevated plasma oncotic pressure. N Engl J Med 317:150–153PubMedGoogle Scholar
  6. 6.
    Ragaller MJ, Theilen H, Koch T (2001) Volume replacement in critically ill patients with acute renal failure. J Am Soc Nephrol 12(Suppl 17):S33–S39PubMedGoogle Scholar
  7. 7.
    Druml W (2004) Acute renal failure is not a “cute” renal failure!. Intensive Care Med 30:1886–1890PubMedCrossRefGoogle Scholar
  8. 8.
    Boer WH, Koomans HA, Dorhout Mees EJ (1987) Renal haemodynamics and sodium handling after hyperoncotic albumin infusion in sodium-restricted normal man. Eur J Clin Invest 17:442–447PubMedCrossRefGoogle Scholar
  9. 9.
    Cittanova ML, Leblanc I, Legendre C, Mouquet C, Riou B, Coriat P (1996) Effect of hydroxyethylstarch in brain-dead kidney donors on renal function in kidney-transplant recipients. Lancet 348:1620–1622PubMedCrossRefGoogle Scholar
  10. 10.
    Schortgen F, Lacherade JC, Bruneel F, Cattaneo I, Hemery F, Lemaire F, Brochard L (2001) Effects of hydroxyethylstarch and gelatin on renal function in severe sepsis: a multicentre randomised study. Lancet 357:911–916PubMedCrossRefGoogle Scholar
  11. 11.
    Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, Moerer O, Gruendling M, Oppert M, Grond S, Olthoff D, Jaschinski U, John S, Rossaint R, Welte T, Schaefer M, Kern P, Kuhnt E, Kiehntopf M, Hartog C, Natanson C, Loeffler M, Reinhart K, e Network S (2008) Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 358:125–139PubMedCrossRefGoogle Scholar
  12. 12.
    Winkelmayer WC, Glynn RJ, Levin R, Avorn J (2003) Hydroxyethyl starch and change in renal function in patients undergoing coronary artery bypass graft surgery. Kidney Int 64:1046–1049PubMedCrossRefGoogle Scholar
  13. 13.
    Druml W, Polzleitner D, Laggner AN, Lenz K, Ulrich W (1988) Dextran-40, acute renal failure, and elevated plasma oncotic pressure. N Engl J Med 318:252–254Google Scholar
  14. 14.
    Boldt J, Brenner T, Lehmann A, Lang J, Kumle B, Werling C (2003) Influence of two different volume replacement regimens on renal function in elderly patients undergoing cardiac surgery: comparison of a new starch preparation with gelatin. Intensive Care Med 29:763–769PubMedGoogle Scholar
  15. 15.
    Dehne MG, Muhling J, Sablotzki A, Dehne K, Sucke N, Hempelmann G (2001) Hydroxyethyl starch (HES) does not directly affect renal function in patients with no prior renal impairment. J Clin Anesth 13:103–111PubMedCrossRefGoogle Scholar
  16. 16.
    Kumle B, Boldt J, Piper S, Schmidt C, Suttner S, Salopek S (1999) The influence of different intravascular volume replacement regimens on renal function in the elderly. Anesth Analg 89:1124–1130PubMedCrossRefGoogle Scholar
  17. 17.
    Neff TA, Doelberg M, Jungheinrich C, Sauerland A, Spahn DR, Stocker R (2003) Repetitive large-dose infusion of the novel hydroxyethyl starch 130/0.4 in patients with severe head injury. Anesth Analg 96:1453–1459PubMedCrossRefGoogle Scholar
  18. 18.
    Van der Linden PJ, De Hert SG, Daper A, Trenchant A, Schmartz D, Defrance P, Kimbimbi P (2004) 3.5% urea-linked gelatin is as effective as 6% HES 200/0.5 for volume management in cardiac surgery patients. Can J Anaesth 51:236–241PubMedGoogle Scholar
  19. 19.
    Rudolf J (2002) Hydroxyethyl starch for hypervolemic hemodilution in patients with acute ischemic stroke: a randomized, placebo-controlled phase II safety study. Cerebrovasc Dis 14:33–41PubMedCrossRefGoogle Scholar
  20. 20.
    The SAFE Study Investigators (2004) A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 350:2247–2256CrossRefGoogle Scholar
  21. 21.
    Wunsch H, Linde-Zwirble WT, Angus DC (2006) Methods to adjust for bias and confounding in critical care health services research involving observational data. J Crit Care 21:1–7PubMedCrossRefGoogle Scholar
  22. 22.
    (1992) American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–874Google Scholar
  23. 23.
    Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R (1994) The American–European consensus conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824PubMedGoogle Scholar
  24. 24.
    MacCabe W, Jackson G (1962) Gram negative bacteremia, etiology and ecology. Arch Intern Med 110:847–855Google Scholar
  25. 25.
    Le Gall JR, Lemeshow S, Saulnier F (1993) A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. JAMA 270:2957–2963PubMedCrossRefGoogle Scholar
  26. 26.
    Le Gall JR, Klar J, Lemeshow S, Saulnier F, Alberti C, Artigas A, Teres D (1996) The logistic organ dysfunction system. A new way to assess organ dysfunction in the intensive care unit. ICU Scoring Group. JAMA 276:802–810PubMedCrossRefGoogle Scholar
  27. 27.
    Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, Reinhart CK, Suter PM, Thijs LG (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 22:707–710PubMedCrossRefGoogle Scholar
  28. 28.
    Boldt J, Suttner S (2005) Plasma substitutes. Minerva Anestesiol 71:741–758PubMedGoogle Scholar
  29. 29.
    Lamke LO, Liljedahl SO (1976) Plasma volume changes after infusion of various plasma expanders. Resuscitation 5:93–102PubMedCrossRefGoogle Scholar
  30. 30.
    Rackow EC, Falk JL, Fein IA, Siegel JS, Packman MI, Haupt MT, Kaufman BS, Putnam D (1983) Fluid resuscitation in circulatory shock: a comparison of the cardiorespiratory effects of albumin, hetastarch, and saline solutions in patients with hypovolemic and septic shock. Crit Care Med 11:839–850PubMedCrossRefGoogle Scholar
  31. 31.
    Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR (1996) A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol 49:1373–1379PubMedCrossRefGoogle Scholar
  32. 32.
    Rosenbaum PR, Rubin DB (1984) Reducing bias in observational studies using subclassification on the propensity score. J Am Stat Assoc 79:516–524CrossRefGoogle Scholar
  33. 33.
    Hunter D (2006) First, gather the data. N Engl J Med 354:329–331PubMedCrossRefGoogle Scholar
  34. 34.
    Mangano DT, Tudor IC, Dietzel C (2006) The risk associated with aprotinin in cardiac surgery. N Engl J Med 354:353–365PubMedCrossRefGoogle Scholar
  35. 35.
    Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P (2004) Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 8:R204–R212PubMedCrossRefGoogle Scholar
  36. 36.
    Richard C, Warszawski J, Anguel N, Deye N, Combes A, Barnoud D, Boulain T, Lefort Y, Fartoukh M, Baud F, Boyer A, Brochard L, Teboul JL (2003) Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. JAMA 290:2713–2720PubMedCrossRefGoogle Scholar
  37. 37.
    Miletin MS, Stewart TE, Norton PG (2002) Influences on physicians’ choices of intravenous colloids. Intensive Care Med 28:917–924PubMedCrossRefGoogle Scholar
  38. 38.
    Cowley AW Jr, Skelton MM (1991) Dominance of colloid osmotic pressure in renal excretion after isotonic volume expansion. Am J Physiol 261:H1214–H1225PubMedGoogle Scholar
  39. 39.
    Fleming SJ, Dallemagne CR, Endre ZH, Yesberg NE, Cross RB (1992) Acute lowering of plasma oncotic pressure increases filtration fraction and sodium excretion in conscious sheep. Ren Physiol Biochem 15:334–340PubMedCrossRefGoogle Scholar
  40. 40.
    Schupbach P, Pappova E, Schilt W, Kollar J, Kollar M, Sipos P, Vucic D (1978) Perfusate oncotic pressure during cardiopulmonary bypass. Optimum level as determined by metabolic acidosis, tissue edema, and renal function. Vox Sang 35:332–344PubMedGoogle Scholar
  41. 41.
    Bartels C, Hadzik B, Abel M, Roth B (1996) Renal failure associated with unrecognized hyperoncotic states after pediatric heart surgery. Intensive Care Med 22:492–494PubMedCrossRefGoogle Scholar
  42. 42.
    Himpe D, Van Cauwelaert P, Neels H, Stinkens D, Van den Fonteyne F, Theunissen W, Muylaert P, Hermans C, Goossens G, Moeskops J et al (1991) Priming solutions for cardiopulmonary bypass: comparison of three colloids. J Cardiothorac Vasc Anesth 5:457–466PubMedCrossRefGoogle Scholar
  43. 43.
    Gore DC, Dalton JM, Gehr TW (1996) Colloid infusions reduce glomerular filtration in resuscitated burn victims. J Trauma 40:356–360PubMedCrossRefGoogle Scholar
  44. 44.
    James MF, Latoo MY, Mythen MG, Mutch M, Michaelis C, Roche AM, Burdett E (2004) Plasma volume changes associated with two hydroxyethyl starch colloids following acute hypovolaemia in volunteers. Anaesthesia 59:738–742PubMedCrossRefGoogle Scholar
  45. 45.
    Ickx BE, Bepperling F, Melot C, Schulman C, Van der Linden PJ (2003) Plasma substitution effects of a new hydroxyethyl starch HES 130/0.4 compared with HES 200/0.5 during and after extended acute normovolaemic haemodilution. Br J Anaesth 91:196–202PubMedCrossRefGoogle Scholar
  46. 46.
    Boldt J, Brosch C, Ducke M, Papsdorf M, Lehmann A (2007) Influence of volume therapy with a modern hydroxyethylstarch preparation on kidney function in cardiac surgery patients with compromised renal function: a comparison with human albumin. Crit Care Med 35:2740–2746PubMedGoogle Scholar
  47. 47.
    Mahmood A, Gosling P, Vohra R (2007) Randomized clinical trial comparing the effects on renal function of hydroxyethyl starch or gelatine during aortic aneurysm surgery. Br J Surg 94:427–443PubMedCrossRefGoogle Scholar
  48. 48.
    Dubois MJ, Orellana-Jimenez C, Melot C, De Backer D, Berre J, Leeman M, Brimioulle S, Appoloni O, Creteur J, Vincent JL (2006) Albumin administration improves organ function in critically ill hypoalbuminemic patients: a prospective, randomized, controlled, pilot study. Crit Care Med 34:2536–2540PubMedCrossRefGoogle Scholar
  49. 49.
    Martin GS, Moss M, Wheeler AP, Mealer M, Morris JA, Bernard GR (2005) A randomized, controlled trial of furosemide with or without albumin in hypoproteinemic patients with acute lung injury. Crit Care Med 33:1681–1687PubMedCrossRefGoogle Scholar
  50. 50.
    Sakr Y, Payen D, Reinhart K, Sipmann FS, Zavala E, Bewley J, Marx G, Vincent JL (2007) Effects of hydroxyethyl starch administration on renal function in critically ill patients. Br J Anaesth 98:216–224PubMedCrossRefGoogle Scholar
  51. 51.
    Sort P, Navasa M, Arroyo V, Aldeguer X, Planas R, Ruiz-del-Arbol L, Castells L, Vargas V, Soriano G, Guevara M, Gines P, Rodes J (1999) Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. N Engl J Med 341:403–409PubMedCrossRefGoogle Scholar
  52. 52.
    Moore FA, McKinley BA, Moore EE (2004) The next generation in shock resuscitation. Lancet 363:1988–1996PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Frédérique Schortgen
    • 1
    • 6
    Email author
  • Emmanuelle Girou
    • 2
    • 3
    • 4
  • Nicolas Deye
    • 1
  • Laurent Brochard
    • 1
    • 3
    • 5
  • for the CRYCO Study Group
  1. 1.Réanimation MédicaleAP-HP, Groupe Hospitalier Albert Chenevier, Henri MondorCréteilFrance
  2. 2.Unité de Contrôle, Epidémiologie et Prévention de l’InfectionAP-HP, Groupe Hospitalier Albert Chenevier, Henri MondorCréteilFrance
  3. 3.Faculté de MédecineUniversité Paris 12CréteilFrance
  4. 4.CeRBEP, Institut PasteurParisFrance
  5. 5.INSERM, U841CréteilFrance
  6. 6.Service de réanimation médicale, CHU Henri MondorCréteilFrance

Personalised recommendations