Intensive Care Medicine

, Volume 34, Issue 11, pp 2026–2034 | Cite as

Proportional assist ventilation with load-adjustable gain factors in critically ill patients: comparison with pressure support

  • Nektaria Xirouchaki
  • Eumorfia Kondili
  • Katerina Vaporidi
  • George Xirouchakis
  • Maria Klimathianaki
  • George Gavriilidis
  • Evi Alexandopoulou
  • Maria Plataki
  • Christina Alexopoulou
  • Dimitris Georgopoulos
Original

Abstract

Objectives

It is not known if proportional assist ventilation with load-adjustable gain factors (PAV+) may be used as a mode of support in critically ill patients. The aim of this study was to examine the effectiveness of sustained use of PAV+ in critically ill patients and compare it with pressure support ventilation (PS).

Design and setting

Randomized study in the intensive care unit of a university hospital.

Methods

A total of 208 critically ill patients mechanically ventilated on controlled modes for at least 36 h and meeting certain criteria were randomized to receive either PS (n = 100) or PAV+ (n = 108). Specific written algorithms were used to adjust the ventilator settings in each mode. PAV+ or PS was continued for 48 h unless the patients met pre-defined criteria either for switching to controlled modes (failure criteria) or for breathing without ventilator assistance.

Results

Failure rate was significantly lower in PAV+ than that in PS (11.1 vs. 22.0%, P = 0.040, OR 0.443, 95% CI 0.206–0.952). The proportion of patients exhibiting major patient–ventilator dyssynchronies at least during one occasion and after adjusting the initial ventilator settings, was significantly lower in PAV+ than in PS (5.6 vs. 29.0%, P < 0.001, OR 0.1, 95% CI 0.06–0.4). The proportion of patients meeting criteria for unassisted breathing did not differ between modes.

Conclusions

PAV+ may be used as a useful mode of support in critically ill patients. Compared to PS, PAV+ increases the probability of remaining on spontaneous breathing, while it considerably reduces the incidence of patient–ventilator asynchronies.

Keywords

Controlled modes Assisted modes Patient–ventilator interaction 

Supplementary material

134_2008_1209_MOESM1_ESM.doc (524 kb)
ESM1 (DOC 524 kb)

References

  1. 1.
    Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, Zhu J, Sachdeva R, Sonnad S, Kaiser LR, Rubinstein NA, Powers SK, Shrager JB (2008) Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 358:1327–1335PubMedCrossRefGoogle Scholar
  2. 2.
    Putensen C, Zech S, Wrigge H, Zinserling J, Stuber F, Von Spiegel T, Mutz N (2001) Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 164:43–49PubMedGoogle Scholar
  3. 3.
    Putensen C, Hering R, Muders T, Wrigge H (2005) Assisted breathing is better in acute respiratory failure. Curr Opin Crit Care 11:63–68PubMedCrossRefGoogle Scholar
  4. 4.
    Cereda M, Foti G, Marcora B, Gili M, Giacomini M, Sparacino ME, Pesenti A (2000) Pressure support ventilation in patients with acute lung injury. Crit Care Med 28:1269–1275PubMedCrossRefGoogle Scholar
  5. 5.
    Esteban A, Anzueto A, Alia I, Gordo F, Apezteguia C, Palizas F, Cide D, Goldwaser R, Soto L, Bugedo G, Rodrigo C, Pimentel J, Raimondi G, Tobin MJ (2000) How is mechanical ventilation employed in the intensive care unit? An international utilization review. Am J Respir Crit Care Med 161:1450–1458PubMedGoogle Scholar
  6. 6.
    Esteban A, Ferguson ND, Meade MO, Frutos-Vivar F, Apezteguia C, Brochard L, Raymondos K, Nin N, Hurtado J, Tomicic V, Gonzalez M, Elizalde J, Nightingale P, Abroug F, Pelosi P, Arabi Y, Moreno R, Jibaja M, D’Empaire G, Sandi F, Matamis D, Montanez AM, Anzueto A (2008) Evolution of mechanical ventilation in response to clinical research. Am J Respir Crit Care Med 177:170–177PubMedCrossRefGoogle Scholar
  7. 7.
    MacIntyre NR (1986) Respiratory function during pressure support ventilation. Chest 89:677–683PubMedCrossRefGoogle Scholar
  8. 8.
    Younes M (1991) In: JJ M (ed) Ventilatory failure. Springer, Berlin Heidelberg New York, p 361–380Google Scholar
  9. 9.
    Younes M (1992) Proportional assist ventilation, a new approach to ventilatory support. Theory. Am Rev Respir Dis 145:114–120PubMedGoogle Scholar
  10. 10.
    Ranieri VM, Giuliani R, Mascia L, Grasso S, Petruzzelli V, Puntillo N, Perchiazzi G, Fiore T, Brienza A (1996) Patient–ventilator interaction during acute hypercapnia: pressure-support vs. proportional-assist ventilation. J Appl Physiol 81:426–436PubMedGoogle Scholar
  11. 11.
    Bosma K, Ferreyra G, Ambrogio C, Pasero D, Mirabella L, Braghiroli A, Appendini L, Mascia L, Ranieri VM (2007) Patient–ventilator interaction and sleep in mechanically ventilated patients: pressure support versus proportional assist ventilation. Crit Care Med 35:1048–1054PubMedCrossRefGoogle Scholar
  12. 12.
    Grasso S, Puntillo F, Mascia L, Ancona G, Fiore T, Bruno F, Slutsky AS, Ranieri VM (2000) Compensation for increase in respiratory workload during mechanical ventilation. Pressure-support versus proportional-assist ventilation. Am J Respir Crit Care Med 161:819–826PubMedGoogle Scholar
  13. 13.
    Mitrouska J, Xirouchaki N, Patakas D, Siafakas N, Georgopoulos D (1999) Effects of chemical feedback on respiratory motor and ventilatory output during different modes of assisted mechanical ventilation. Eur Respir J 13:873–882PubMedCrossRefGoogle Scholar
  14. 14.
    Giannouli E, Webster K, Roberts D, Younes M (1999) Response of ventilator-dependent patients to different levels of pressure support and proportional assist. Am J Respir Crit Care Med 159:1716–1725PubMedGoogle Scholar
  15. 15.
    Younes M, Kun J, Masiowski B, Webster K, Roberts D (2001) A method for noninvasive determination of inspiratory resistance during proportional assist ventilation. Am J Respir Crit Care Med 163:829–839PubMedGoogle Scholar
  16. 16.
    Younes M, Webster K, Kun J, Roberts D, Masiowski B (2001) A method for measuring passive elastance during proportional assist ventilation. Am J Respir Crit Care Med 164:50–60PubMedGoogle Scholar
  17. 17.
    Kondili E, Prinianakis G, Alexopoulou C, Vakouti E, Klimathianaki M, Georgopoulos D (2006) Respiratory load compensation during mechanical ventilation: proportional assist ventilation with load-adjustable gain factors versus pressure support. Intensive Care Med 32:692–699PubMedCrossRefGoogle Scholar
  18. 18.
    Alexopoulou C, Kondili E, Vakouti E, Klimathianaki M, Prinianakis G, Georgopoulos D (2007) Sleep during proportional-assist ventilation with load-adjustable gain factors in critically ill patients. Intensive Care Med 33:1139–1147PubMedCrossRefGoogle Scholar
  19. 19.
    Meza S, Mendez M, Ostrowski M, Younes M (1998) Susceptibility to periodic breathing with assisted ventilation during sleep in normal subjects. J Appl Physiol 85:1929–1940PubMedGoogle Scholar
  20. 20.
    Kress JP, Hall JB (2006) Sedation in the mechanically ventilated patient. Crit Care Med 34:2541–2546PubMedCrossRefGoogle Scholar
  21. 21.
    Kress JP, Pohlman AS, O’Connor MF, Hall JB (2000) Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med 342:1471–1477PubMedCrossRefGoogle Scholar
  22. 22.
    Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL (2008) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 36:296–327PubMedCrossRefGoogle Scholar
  23. 23.
    Bates JH, Rossi A, Milic-Emili J (1985) Analysis of the behavior of the respiratory system with constant inspiratory flow. J Appl Physiol 58:1840–1848PubMedGoogle Scholar
  24. 24.
    Gottfried SB, Higgs BD, Rossi A, Carli F, Mengeot PM, Calverly PM, Zocchi L, Milic-Emili J (1985) Interrupter technique for measurement of respiratory mechanics in anesthetized humans. J Appl Physiol 59:647–652PubMedGoogle Scholar
  25. 25.
    Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L (2006) Patient–ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med 32:1515–1522PubMedCrossRefGoogle Scholar
  26. 26.
    Parthasarathy S, Tobin MJ (2002) Effect of ventilator mode on sleep quality in critically ill patients. Am J Respir Crit Care Med 166:1423–1429PubMedCrossRefGoogle Scholar
  27. 27.
    Parthasarathy S, Tobin MJ (2004) Sleep in the intensive care unit. Intensive Care Med 30:197–206PubMedCrossRefGoogle Scholar
  28. 28.
    Eissa NT, Ranieri VM, Corbeil C, Chasse M, Robatto FM, Braidy J, Milic-Emili J (1991) Analysis of behavior of the respiratory system in ARDS patients: effects of flow, volume, and time. J Appl Physiol 70:2719–2729PubMedCrossRefGoogle Scholar
  29. 29.
    Pelosi P, Croci M, Ravagnan I, Vicardi P, Gattinoni L (1996) Total respiratory system, lung, and chest wall mechanics in sedated-paralyzed postoperative morbidly obese patients. Chest 109:144–151PubMedCrossRefGoogle Scholar
  30. 30.
    Parthasarathy S, Jubran A, Tobin MJ (1998) Cycling of inspiratory and expiratory muscle groups with the ventilator in airflow limitation. Am J Respir Crit Care Med 158:1471–1478PubMedGoogle Scholar
  31. 31.
    Kondili E, Prinianakis G, Georgopoulos D (2003) Patient–ventilator interaction. Br J Anaesth 91:106–119PubMedCrossRefGoogle Scholar
  32. 32.
    Thille AW, Cabello B, Galia F, Lyazidi A, Brochard L (2008) Reduction of patient–ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Med, Apr 24. [Epub ahead of print]Google Scholar
  33. 33.
    Georgopoulos D, Prinianakis G, Kondili E (2006) Bedside waveforms interpretation as a tool to identify patient–ventilator asynchronies. Intensive Care Med 32:34–47PubMedCrossRefGoogle Scholar
  34. 34.
    Tassaux D, Gainnier M, Battisti A, Jolliet P (2005) Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload. Am J Respir Crit Care Med 172:1283–1289PubMedCrossRefGoogle Scholar
  35. 35.
    Younes M (2006) In: Tobin MJ (ed) Principles and practice of mechanical ventilation. McGraw-Hill, p 335–364Google Scholar
  36. 36.
    The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308Google Scholar
  37. 37.
    Terragni PP, Rosboch G, Tealdi A, Corno E, Menaldo E, Davini O, Gandini G, Herrmann P, Mascia L, Quintel M, Slutsky AS, Gattinoni L, Ranieri VM (2007) Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 175:160–166PubMedCrossRefGoogle Scholar
  38. 38.
    Younes M, Riddle W, Polacheck J (1981) A model for the relation between respiratory neural and mechanical outputs. III. Validation. J Appl Physiol 51:990–1001PubMedGoogle Scholar
  39. 39.
    Cullen DJ, Sweitzer BJ, Bates DW, Burdick E, Edmondson A, Leape LL (1997) Preventable adverse drug events in hospitalized patients: a comparative study of intensive care and general care units. Crit Care Med 25:1289–1297PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Nektaria Xirouchaki
    • 1
  • Eumorfia Kondili
    • 1
  • Katerina Vaporidi
    • 1
  • George Xirouchakis
    • 1
  • Maria Klimathianaki
    • 1
  • George Gavriilidis
    • 1
  • Evi Alexandopoulou
    • 1
  • Maria Plataki
    • 1
  • Christina Alexopoulou
    • 1
  • Dimitris Georgopoulos
    • 1
  1. 1.Intensive Care Medicine Department, University Hospital of Heraklion, Medical SchoolUniversity of CreteCreteGreece

Personalised recommendations