Intensive Care Medicine

, Volume 34, Issue 11, pp 2106–2111 | Cite as

Extravascular lung water volume measurement by a novel lithium-thermal indicator dilution method: comparison of three techniques to post-mortem gravimetry

  • Benjamin Maddison
  • Riccardo Giudici
  • Enrico Calzia
  • Christopher Wolff
  • Charles Hinds
  • Peter Radermacher
  • Rupert M. Pearse
Brief Report



To compare the lithium-thermal double indicator dilution (Li-thermal), indocyanine green-thermal double indicator dilution (ICG-thermal), single thermal indicator dilution (single-thermal) and gravimetric techniques of extravascular lung water volume (EVLW) measurement in porcine models of acute lung injury.


Two animal models designed to invoke a systemic inflammatory response.


Laboratory study.


A total of 12 immature Deutsches Landschwein pigs.


Extravascular lung water volume was measured at four time points using Li-thermal, ICG-thermal and single-thermal techniques. Measurements were performed using existing technology according to manufacturer’s instructions. Post-mortem gravimetric EVLW measurements were performed by measuring wet and dry mass of lung tissue. Measurements were compared using the Bland–Altman method. Data are presented as mean (SD).

Measurements and main results

Data were collected in 12 animals and comparison between all 4 techniques was possible in 10 animals. EVLW measured by gravimetry was 9.2 (±3.0)ml kg−1. When compared to gravimetry, both Li-thermal and ICG-thermal techniques showed minimal bias but wide limits of agreement (LOA) [Li-thermal: bias −1.8 ml kg−1 (LOA ± 13.1); ICG-thermal bias −1.0 ml kg−1 (LOA ± 6.6)]. Comparison between the single-thermal and gravimetric methods identified both considerable bias and wide LOA [+8.5 ml kg−1 (LOA ± 14.5)].


Clinically significant differences between EVLW measurements obtained with the gravimetric method and three in vivo indicator dilution techniques were identified. While none of the techniques could be considered ideal, the ICG-thermal method appeared more reliable than either the Li-thermal or single thermal techniques. Further research is required to determine whether the accuracy of the prototype Li-thermal technique can be improved.


Cardiovascular monitoring Intrathoracic blood volume Extravascular lung water Lithium indicator dilution Gravimetry Acute lung injury 

Supplementary material

134_2008_1207_MOESM1_ESM.doc (268 kb)
ESM1 (DOC 269 kb)
134_2008_1207_MOESM2_ESM.doc (41 kb)
ESM2 (DOC 41 kb)


  1. 1.
    Sakka SG, Klein M, Reinhart K, Meier-Hellmann A (2002) Prognostic value of extravascular lung water in critically ill patients. Chest 122:2080–2086PubMedCrossRefGoogle Scholar
  2. 2.
    Mitchell JP, Schuller D, Calandrino FS, Schuster DP (1992) Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am Rev Respir Dis 145:990–998PubMedGoogle Scholar
  3. 3.
    Laggner A, Kleinberger G, Haller J, Lenz K, Sommer G, Druml W (1984) Bedside estimation of extravascular lung water in critically ill patients: comparison of the chest radiograph and the thermal dye technique. Intensive Care Med 10:309–313PubMedCrossRefGoogle Scholar
  4. 4.
    Chinard FP (1975) Estimation of extravascular lung water by indicator-dilution techniques. Circ Res 37:137–145PubMedGoogle Scholar
  5. 5.
    Stewart GN (1921) The pulmonary circulation time, the quantity of blood in the lungs and the output of the heart. Am J Physiol 58:20–44Google Scholar
  6. 6.
    Slutsky RA, Higgins CB (1985) In vivo validation of the thermal-green dye technique for measuring extravascular lung water. Crit Care Med 13:432–435PubMedCrossRefGoogle Scholar
  7. 7.
    Pfeiffer UJ, Lichtwarck-Aschoff M, Beale R (1994) Single thermodilution monitoring of global end-diastolic volume, intrathoracic blood volume and extravascular lung water (abstract). Clin Intensive Care 5(Suppl):38–39Google Scholar
  8. 8.
    Rossi P, Wanecek M, Rudehill A, Konrad D, Weitzberg E, Oldner A (2006) Comparison of a single indicator and gravimetric technique for estimation of extravascular lung water in endotoxemic pigs. Crit Care Med 34:1437–1443PubMedCrossRefGoogle Scholar
  9. 9.
    Band DM, Linton RA, O’Brien TK, Jonas MM, Linton NW (1997) The shape of indicator dilution curves used for cardiac output measurement in man. J Physiol 498:225–229PubMedGoogle Scholar
  10. 10.
    Jonas M, Linton RAF, O’Brien TK, Band DM, Linton NWF, Kelly F, Burden TJ, Chevalier SFA, Thompson RPH, Birch NJ, Powell JJ (2001) The pharmacokinetics of intravenous lithium chloride in patients and normal volunteers. J Trace Microprobe Tech 19:313–320CrossRefGoogle Scholar
  11. 11.
    Renner LE, Morton MJ, Sakuma GY (1993) Indicator amount, temperature, and intrinsic cardiac output affect thermodilution cardiac output accuracy and reproducibility. Crit Care Med 21:586–597PubMedCrossRefGoogle Scholar
  12. 12.
    Kurita T, Morita K, Kawasaki H, Fujii K, Kazama T, Sato S (2002) Lithium dilution cardiac output measurement in oleic acid-induced pulmonary edema. J Cardiothorac Vasc Anesth 16:334–337PubMedCrossRefGoogle Scholar
  13. 13.
    Pfeiffer UJ, Birk M, Aschenbrenner A, Blumel G (1982) The system for quantitating thermal-dye extravascular lung water. In: Prakash O (ed) Computers in critical care and pulmonary medicine. Plenum, New York, pp 123–125Google Scholar
  14. 14.
    Pearse RM, Ikram K, Barry J (2004) Equipment review: an appraisal of the LiDCO plus method of measuring cardiac output. Crit Care 8:190–195PubMedCrossRefGoogle Scholar
  15. 15.
    von Spiegel T, Wietasch G, Bursch J, Hoeft A (1996) Cardiac output determination with transpulmonary thermodilution. An alternative to pulmonary catheterization? Anaesthesist 45:1045–1050CrossRefGoogle Scholar
  16. 16.
    Hill SL, Elings VB, Lewis F (1981) Effect of cardiac output on extravascular lung water. Am Surg 47:522–528PubMedGoogle Scholar
  17. 17.
    Pohl T, Kozieras J, Sakka S (2008) Influence of extravascular lung water on transpulmonary thermodilution-derived cardiac output measurement. Intensive Care Med 34:533–537PubMedCrossRefGoogle Scholar
  18. 18.
    Fernandez-Mondejar E, Castano-Perez J, Rivera-Fernandez R, Colmenero-Ruiz M, Manzano F, Perez-Villares J, de la Chica R (2003) Quantification of lung water by transpulmonary thermodilution in normal and edematous lung. J Crit Care 18:253–258PubMedCrossRefGoogle Scholar
  19. 19.
    Pearce ML, Yamashita J, Beazell J (1965) Measurement of pulmonary edema. Circ Res 16:482–488PubMedGoogle Scholar
  20. 20.
    Rossi P, Oldner A, Wanecek M, Leksell LG, Rudehill A, Konrad D, Weitzberg E (2003) Comparison of gravimetric and a double-indicator dilution technique for assessment of extra-vascular lung water in endotoxaemia. Intensive Care Med 29:460–466PubMedCrossRefGoogle Scholar
  21. 21.
    Roch A, Michelet P, Lambert D, Delliaux S, Saby C, Perrin G, Ghez O, Bregeon F, Thomas P, Carpentier JP, Papazian L, Auffray JP (2004) Accuracy of the double indicator method for measurement of extravascular lung water depends on the type of acute lung injury. Crit Care Med 32:811–817PubMedCrossRefGoogle Scholar
  22. 22.
    Carlile PV, Lowery DD, Gray BA (1986) Effect of PEEP and type of injury on thermal-dye estimation of pulmonary edema. J Appl Physiol 60:22–31PubMedGoogle Scholar
  23. 23.
    Katzenelson R, Perel A, Berkenstadt H, Preisman S, Kogan S, Sternik L, Segal E (2004) Accuracy of transpulmonary thermodilution versus gravimetric measurement of extravascular lung water. Crit Care Med 32:1550–1554PubMedCrossRefGoogle Scholar
  24. 24.
    Kirov MY, Kuzkov VV, Kuklin VN, Waerhaug K, Bjertnaes LJ (2004) Extravascular lung water assessed by transpulmonary single thermodilution and postmortem gravimetry in sheep. Crit Care 8:R451–R458PubMedCrossRefGoogle Scholar
  25. 25.
    Neumann P (1999) Extravascular lung water and intrathoracic blood volume: double versus single indicator dilution technique. Intensive Care Med 25:216–219PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Benjamin Maddison
    • 1
  • Riccardo Giudici
    • 2
  • Enrico Calzia
    • 3
  • Christopher Wolff
    • 1
  • Charles Hinds
    • 1
  • Peter Radermacher
    • 3
  • Rupert M. Pearse
    • 1
  1. 1.Intensive Care Unit, Royal London HospitalBarts and The London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
  2. 2.Institute of Anaesthesiology and Intensive Care MedicinePolo Universitario San Paolo, University of MilanMilanItaly
  3. 3.Sektion Anästhesiologische Pathophysiologie und VerfahrensentwicklungUniversitätsklinikumUlmGermany

Personalised recommendations