Advertisement

Intensive Care Medicine

, Volume 34, Issue 10, pp 1883–1890 | Cite as

Orthogonal polarization spectroscopy to detect mesenteric hypoperfusion

  • Hendrik Bracht
  • Vladimir Krejci
  • Luzius Hiltebrand
  • Sebastian Brandt
  • Gisli Sigurdsson
  • Syed Z. Ali
  • Jukka Takala
  • Stephan M. JakobEmail author
Experimental

Abstract

Objective

Orthogonal polarization spectral (OPS) imaging is used to assess mucosal microcirculation. We tested sensitivity and variability of OPS in the assessment of mesenteric blood flow (Q sma) reduction.

Setting

University Animal Laboratory.

Interventions

In eight pigs, Q sma was reduced in steps of 15% from baseline; five animals served as controls. Jejunal mucosal microcirculatory blood flow was recorded with OPS and laser Doppler flowmetry at each step. OPS data from each period were collected and randomly ordered. Samples from each period were individually chosen by two blinded investigators and quantified [capillary density (number of vessels crossing predefined lines), number of perfused villi] after agreement on the methodology.

Measurement and results

Interobserver coefficient of variation (CV) for capillary density from samples representing the same flow condition was 0.34 (0.04–1.41) and intraobserver CV was 0.10 (0.02–0.61). Only one investigator observed a decrease in capillary density [to 62% (48–82%) of baseline values at 45% Q sma reduction; P = 0.011], but comparisons with controls never revealed significant differences. In contrast, reduction in perfused villi was detected by both investigators at 75% of mesenteric blood flow reduction. Laser Doppler flow revealed heterogeneous microcirculatory perfusion.

Conclusions

Assessment of capillary density did not reveal differences between animals with and without Q sma reduction, and evaluation of perfused villi revealed blood flow reduction only when Q sma was very low. Potential explanations are blood flow redistribution and heterogeneity, and suboptimal contrast of OPS images. Despite agreement on the method of analysis, interobserver differences in the quantification of vessel density on gut mucosa using OPS are high.

Keywords

OPS Splanchnic perfusion Microcirculation Laser Doppler 

Supplementary material

134_2008_1130_MOESM1_ESM.doc (714 kb)
(DOC 714 kb)

References

  1. 1.
    Bilkovski RN, Rivers EP, Horst HM (2004) Targeted resuscitation strategies after injury. Curr Opin Crit Care 10:529–538PubMedCrossRefGoogle Scholar
  2. 2.
    Boerma EC, Mathura KR, van der Voort PH, Spronk PE, Ince C (2005) Quantifying bedside-derived imaging of microcirculatory abnormalities in septic patients: a prospective validation study. Crit Care 9:R601–R606PubMedCrossRefGoogle Scholar
  3. 3.
    Bracht H, Krejci V, Hiltebrand L, Takala J, Ali SZ, Jakob SM (2005). Orthogonal polarization spectral imaging does not reveal moderate to severe ileal mucosal blood flow changes. Intensive Care Med 31:S188Google Scholar
  4. 4.
    De Backer D, Creteur J, Dubois MJ, Sakr Y, Vincent JL (2004) Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J 147:91–99PubMedCrossRefGoogle Scholar
  5. 5.
    De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104PubMedCrossRefGoogle Scholar
  6. 6.
    De Backer D, Dubois MJ (2001) Assessment of the microcirculatory flow in patients in the intensive care unit. Curr Opin Crit Care 7:200–203PubMedCrossRefGoogle Scholar
  7. 7.
    von Dobschuetz E, Biberthaler P, Mussack T, Langer S, Messmer K, Hoffmann T (2003) Noninvasive in vivo assessment of the pancreatic microcirculation: orthogonal polarization spectral imaging. Pancreas 26:139–143CrossRefGoogle Scholar
  8. 8.
    Genzel-Boroviczeny O, Christ F, Glas V (2004) Blood transfusion increases functional capillary density in the skin of anemic preterm infants. Pediatr Res 56:751–755PubMedCrossRefGoogle Scholar
  9. 9.
    Krejci V, Hiltebrand L, Buchi C, Ali SZ, Contaldo C, Takala J, Sigurdsson GH, Jakob SM (2006) Decreasing gut wall glucose as an early marker of impaired intestinal perfusion. Crit Care Med 34:2406–2414PubMedCrossRefGoogle Scholar
  10. 10.
    Lazar G, Kaszaki J, Abraham S, Horvath G, Wolfard A, Szentpali K, Paszt A, Balogh A, Boros M (2003) Thoracic epidural anesthesia improves the gastric microcirculation during experimental gastric tube formation. Surgery 134:799–805PubMedCrossRefGoogle Scholar
  11. 11.
    Milner SM (2002) Predicting early burn wound outcome using orthogonal polarization spectral imaging. Int J Dermatol 41:715PubMedCrossRefGoogle Scholar
  12. 12.
    Milner SM, Bhat S, Gulati S, Gherardini G, Smith CE, Bick RJ (2005) Observations on the microcirculation of the human burn wound using orthogonal polarization spectral imaging. Burns 31:316–319PubMedCrossRefGoogle Scholar
  13. 13.
    Pahernik S, Harris AG, Schmitt-Sody M, Krasnici S, Goetz AE, Dellian M, Messmer K (2002) Orthogonal polarisation spectral imaging as a new tool for the assessment of antivascular tumour treatment in vivo: a validation study. Br J Cancer 86:1622–1627PubMedCrossRefGoogle Scholar
  14. 14.
    Peitzman AB, Billiar TR, Harbrecht BG, Kelly E, Udekwu AO, Simmons RL (1995) Hemorrhagic shock. Curr Probl Surg 32:925–1002PubMedCrossRefGoogle Scholar
  15. 15.
    Puhl G, Schaser KD, Pust D, Kohler K, Vollmar B, Menger MD, Neuhaus P, Settmacher U (2004) The delay of rearterialization after initial portal reperfusion in living donor liver transplantation significantly determines the development of microvascular graft dysfunction. J Hepatol 41:299–306PubMedCrossRefGoogle Scholar
  16. 16.
    Puhl G, Schaser KD, Vollmar B, Menger MD, Settmacher U (2003) Noninvasive in vivo analysis of the human hepatic microcirculation using orthogonal polarization spectral imaging. Transplantation 75:756–761PubMedCrossRefGoogle Scholar
  17. 17.
    Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32:1825–1831PubMedCrossRefGoogle Scholar
  18. 18.
    Spronk PE, Ince C, Gardien MJ, Mathura KR, Oudemans-van Straaten HM, Zandstra DF (2002) Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet 360:1395–1396PubMedCrossRefGoogle Scholar
  19. 19.
    Szabo A, Suki B, Csonka E, Eszlari E, Kucsa K, Vajda K, Kaszaki J, Boros M (2004) Flow motion in the intestinal villi during hemorrhagic shock: a new method to characterize the microcirculatory changes. Shock 21:320–328PubMedCrossRefGoogle Scholar
  20. 20.
    Szentpali K, Eros G, Kaszaki J, Tiszlavicz L, Lazar G, Wolfard A, Balogh A, Boros M (2003) Microcirculatory changes in the canine oesophageal mucosa during experimental reflux oesophagitis: comparison of the effects of acid and bile. Scand J Gastroenterol 38:1016–1022PubMedCrossRefGoogle Scholar
  21. 21.
    Temmesfeld-Wollbruck B, Szalay A, Mayer K, Olschewski H, Seeger W, Grimminger F (1998) Abnormalities of gastric mucosal oxygenation in septic shock: partial responsiveness to dopexamine. Am J Respir Crit Care Med 157:1586–1592PubMedGoogle Scholar
  22. 22.
    Trzeciak S, Dellinger RP, Parrillo JE, Guglielmi M, Bajaj J, Abate NL, Arnold RC, Colilla S, Zanotti S, Hollenberg SM; Microcirculatory Alterations in Resuscitation, Shock Investigators (2007) Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med 49:88–98PubMedCrossRefGoogle Scholar
  23. 23.
    Tugtekin IF, Radermacher P, Theisen M, Matejovic M, Stehr A, Ploner F, Matura K, Ince C, Georgieff M, Trager K (2001) Increased ileal-mucosal-arterial PCO2 gap is associated with impaired villus microcirculation in endotoxic pigs. Intensive Care Med 27:757–766PubMedCrossRefGoogle Scholar
  24. 24.
    Uhl E, Lehmberg J, Steiger HJ, Messmer K (2003) Intraoperative detection of early microvasospasm in patients with subarachnoid hemorrhage by using orthogonal polarization spectral imaging. Neurosurgery 52:1307–1315PubMedCrossRefGoogle Scholar
  25. 25.
    Verdant C, Bruhn A, Clausi C, Su F, Wang Z, De Backer D, Vincent JL (2005) Sublingual miccocirculation reflects intestinal mucosal microcirculation in sepsis: a quantitative analysis. Crit Care Med 33:A51CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Hendrik Bracht
    • 1
  • Vladimir Krejci
    • 2
  • Luzius Hiltebrand
    • 2
  • Sebastian Brandt
    • 2
  • Gisli Sigurdsson
    • 3
  • Syed Z. Ali
    • 2
  • Jukka Takala
    • 1
  • Stephan M. Jakob
    • 1
    Email author
  1. 1.Department of Intensive Care MedicineBern University Hospital and University of BernBernSwitzerland
  2. 2.Department of AnesthesiaBern University Hospital and University of BernBernSwitzerland
  3. 3.Department of Anesthesia and Intensive Care MedicineLandspitali University HospitalReykjavikIceland

Personalised recommendations